2,931 research outputs found
Nernst branes from special geometry
We construct new black brane solutions in gauged
supergravity with a general cubic prepotential, which have entropy density
as and thus satisfy the Nernst Law. By using
the real formulation of special geometry, we are able to obtain analytical
solutions in closed form as functions of two parameters, the temperature
and the chemical potential . Our solutions interpolate between
hyperscaling violating Lifshitz geometries with at the
horizon and at infinity. In the zero temperature limit,
where the entropy density goes to zero, we recover the extremal Nernst branes
of Barisch et al, and the parameters of the near horizon geometry change to
.Comment: 37 pages. v2: numerical pre-factors of scalar fields q_A corrected in
Section 3. No changes to conclusions. References adde
Coherent spinor dynamics in a spin-1 Bose condensate
Collisions in a thermal gas are perceived as random or incoherent as a
consequence of the large numbers of initial and final quantum states accessible
to the system. In a quantum gas, e.g. a Bose-Einstein condensate or a
degenerate Fermi gas, the phase space accessible to low energy collisions is so
restricted that collisions be-come coherent and reversible. Here, we report the
observation of coherent spin-changing collisions in a gas of spin-1 bosons.
Starting with condensates occupying two spin states, a condensate in the third
spin state is coherently and reversibly created by atomic collisions. The
observed dynamics are analogous to Josephson oscillations in weakly connected
superconductors and represent a type of matter-wave four-wave mixing. The
spin-dependent scattering length is determined from these oscillations to be
-1.45(18) Bohr. Finally, we demonstrate coherent control of the evolution of
the system by applying differential phase shifts to the spin states using
magnetic fields.Comment: 19 pages, 3 figure
One-sided versus two-sided stochastic descriptions
It is well-known that discrete-time finite-state Markov Chains, which are
described by one-sided conditional probabilities which describe a dependence on
the past as only dependent on the present, can also be described as
one-dimensional Markov Fields, that is, nearest-neighbour Gibbs measures for
finite-spin models, which are described by two-sided conditional probabilities.
In such Markov Fields the time interpretation of past and future is being
replaced by the space interpretation of an interior volume, surrounded by an
exterior to the left and to the right.
If we relax the Markov requirement to weak dependence, that is, continuous
dependence, either on the past (generalising the Markov-Chain description) or
on the external configuration (generalising the Markov-Field description), it
turns out this equivalence breaks down, and neither class contains the other.
In one direction this result has been known for a few years, in the opposite
direction a counterexample was found recently. Our counterexample is based on
the phenomenon of entropic repulsion in long-range Ising (or "Dyson") models.Comment: 13 pages, Contribution for "Statistical Mechanics of Classical and
Disordered Systems
Phase transition and hyperscaling violation for scalar Black Branes
We investigate the thermodynamical behavior and the scaling symmetries of the
scalar dressed black brane (BB) solutions of a recently proposed, exactly
integrable Einstein-scalar gravity model [1], which also arises as
compactification of (p-1)-branes with a smeared charge. The extremal, zero
temperature, solution is a scalar soliton interpolating between a conformal
invariant AdS vacuum in the near-horizon region and a scale covariant metric
(generating hyperscaling violation on the boundary field theory)
asymptotically. We show explicitly that for the boundary field theory this
implies the emergence of an UV length scale (related to the size of the brane),
which decouples in the IR, where conformal invariance is restored. We also show
that at high temperatures the system undergoes a phase transition. Whereas at
small temperature the Schwarzschild-AdS BB is stable, above a critical
temperature the scale covariant, scalar-dressed BB solution, becomes
energetically preferred. We calculate the critical exponent z and the
hyperscaling violation parameter of the scalar-dressed phase. In particular we
show that the hyperscaling violation parameter is always negative. We also show
that the above features are not a peculiarity of the exact integrable model of
Ref.[1], but are a quite generic feature of Einstein-scalar and
Einstein-Maxwell-scalar gravity models for which the squared-mass of the scalar
field is positive and the potential vanishes exponentially as the scalar field
goes to minus infinity.Comment: 20 pages, 4 figures. In the revised version it has been pointed out
that the Einstein-scalar gravity model considered in the paper also arises as
compactification of black p-branes with smeared charge
Schr\"odinger Holography with and without Hyperscaling Violation
We study the properties of the Schr\"odinger-type non-relativistic holography
for general dynamical exponent z with and without hyperscaling violation
exponent \theta. The scalar correlation function has a more general form due to
general z as well as the presence of \theta, whose effects also modify the
scaling dimension of the scalar operator. We propose a prescription for minimal
surfaces of this "codimension 2 holography," and demonstrate the (d-1)
dimensional area law for the entanglement entropy from (d+3) dimensional
Schr\"odinger backgrounds. Surprisingly, the area law is violated for d+1 < z <
d+2, even without hyperscaling violation, which interpolates between the
logarithmic violation and extensive volume dependence of entanglement entropy.
Similar violations are also found in the presence of the hyperscaling
violation. Their dual field theories are expected to have novel phases for the
parameter range, including Fermi surface. We also analyze string theory
embeddings using non-relativistic branes.Comment: 62 pages and 6 figures, v2: several typos in section 5 corrected,
references added, v3: typos corrected, references added, published versio
Aspects of holography for theories with hyperscaling violation
We analyze various aspects of the recently proposed holographic theories with
general dynamical critical exponent z and hyperscaling violation exponent
. We first find the basic constraints on from the gravity
side, and compute the stress-energy tensor expectation values and scalar
two-point functions. Massive correlators exhibit a nontrivial exponential
behavior at long distances, controlled by . At short distance, the
two-point functions become power-law, with a universal form for .
Next, the calculation of the holographic entanglement entropy reveals the
existence of novel phases which violate the area law. The entropy in these
phases has a behavior that interpolates between that of a Fermi surface and
that exhibited by systems with extensive entanglement entropy. Finally, we
describe microscopic embeddings of some metrics into full
string theory models -- these metrics characterize large regions of the
parameter space of Dp-brane metrics for . For instance, the theory of
N D2-branes in IIA supergravity has z=1 and over a wide range
of scales, at large .Comment: 35 pages; v2: new references added; v3: proper reference [14] added;
v4: minor clarification
Spontaneous symmetry breaking in a quenched ferromagnetic spinor Bose condensate
A central goal in condensed matter and modern atomic physics is the
exploration of many-body quantum phases and the universal characteristics of
quantum phase transitions in so far as they differ from those established for
thermal phase transitions. Compared with condensed-matter systems, atomic gases
are more precisely constructed and also provide the unique opportunity to
explore quantum dynamics far from equilibrium. Here we identify a second-order
quantum phase transition in a gaseous spinor Bose-Einstein condensate, a
quantum fluid in which superfluidity and magnetism, both associated with
symmetry breaking, are simultaneously realized. Rb spinor condensates
were rapidly quenched across this transition to a ferromagnetic state and
probed using in-situ magnetization imaging to observe spontaneous symmetry
breaking through the formation of spin textures, ferromagnetic domains and
domain walls. The observation of topological defects produced by this symmetry
breaking, identified as polar-core spin-vortices containing non-zero spin
current but no net mass current, represents the first phase-sensitive in-situ
detection of vortices in a gaseous superfluid.Comment: 6 pages, 4 figure
Structure–properties relationships in fibre drawing of bioactive phosphate glasses
New bioactive phosphate glasses suitable for continuous fibre production are investigated in this work. The structure of both bulk and fibres from Na2O–CaO–MgO–P2O5 glasses has been studied by means of Raman and 31P and 23Na nuclear magnetic resonance spectroscopies, and the structural results have been correlated with the mechanical properties of the fibres and the dissolution rate of the bulk glasses. It has been observed that the mechanical properties of the phosphate glass fibres are influenced by the glass network connectivity, while the dissolution rates are governed by the Qi speciation of the PO4 units. As seen in previous studies, molar volume seems to play an important role in the fragility behaviour of phosphate glasses. Here, a lower molar volume resulting from the increase in the oxygen packing density hinders the cooperative flow of the PO4 units throughout the glass network and, therefore, causes a reduction in the kinetic fragility
Barriers to the provision of smoking cessation assistance:A qualitative study among Romanian family physicians
BACKGROUND: Smoking cessation is the most effective intervention to prevent and slow down the progression of several respiratory and other diseases and improve patient outcomes. Romania has legislation and a national tobacco control programme in line with the World Health Organization Framework for Tobacco Control. However, few smokers are advised to quit by their family physicians (FPs). AIM: To identify and explore the perceived barriers that prevent Romanian FPs from engaging in smoking cessation with patients. METHODS: A qualitative study was undertaken. A total of 41 FPs were recruited purposively from Bucharest and rural areas within 600 km of the city. Ten FPs took part in a focus group and 31 participated in semistructured interviews. Analysis was descriptive, inductive and themed, according to the barriers experienced. RESULTS: Five main barriers were identified: limited perceived role for FPs; lack of time during consultations; past experience and presence of disincentives; patients' inability to afford medication; and lack of training in smoking cessation skills. Overarching these specific barriers were key themes of a medical and societal hierarchy, which undermined the FP role, stretched resources and constrained care. CONCLUSIONS: Many of the barriers described by the Romanian FPs reflected universally recognised challenges to the provision of smoking cessation advice. The context of a relatively hierarchical health-care system and limitations of time and resources exacerbated many of the problems and created new barriers that will need to be addressed if Romania is to achieve the aims of its National Programme Against Tobacco Consumption
Linear Sigma Models with Torsion
Gauged linear sigma models with (0,2) supersymmetry allow a larger choice of
couplings than models with (2,2) supersymmetry. We use this freedom to find a
fully linear construction of torsional heterotic compactifications, including
models with branes. As a non-compact example, we describe a family of metrics
which correspond to deformations of the heterotic conifold by turning on
H-flux. We then describe compact models which are gauge-invariant only at the
quantum level. Our construction gives a generalization of symplectic reduction.
The resulting spaces are non-Kahler analogues of familiar toric spaces like
complex projective space. Perturbatively conformal models can be constructed by
considering intersections.Comment: 40 pages, LaTeX, 1 figure; references added; a new section on
supersymmetry added; quantization condition revisite
- …
