212 research outputs found

    Mouse models for preeclampsia: disruption of redox-regulated signaling

    Get PDF
    The concept that oxidative stress contributes to the development of human preeclampsia has never been tested in genetically-defined animal models. Homozygous deletion of catechol-Omethyl transferase (Comt-/-) in pregnant mice leads to human preeclampsia-like symptoms (high blood pressure, albuminurea and preterm birth) resulting from extensive vasculo-endothelial pathology, primarily at the utero-fetal interface where maternal cardiac output is dramatically increased during pregnancy. Comt converts estradiol to 2-methoxyestradiol 2 (2ME2) which counters angiogenesis by depleting hypoxia inducible factor-1 alpha (HIF-1 alpha) at late pregnancy. We propose that in wild type (Comt++) pregnant mice, 2ME2 destabilizes HIF-1 alpha by inhibiting mitochondrial superoxide dismutase (MnSOD). Thus, 2ME2 acts as a pro-oxidant, disrupting redox-regulated signaling which blocks angiogenesis in wild type (WT) animals in physiological pregnancy. Further, we suggest that a lack of this inhibition under normoxic conditions in mutant animals (Comt-/-) stabilises HIF-1 alpha by inactivating prolyl hydroxlases (PHD). We predict that a lack of inhibition of MnSOD, leading to persistent accumulation of HIF-1 alpha, would trigger inflammatory infiltration and endothelial damage in mutant animals. Critical tests of this hypothesis would be to recreate preeclampsia symptoms by inducing oxidative stress in WT animals or to ameliorate by treating mutant mice with Mn-SOD-catalase mimetics or activators of PHD

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Plasmodium APC3 mediates chromosome condensation and cytokinesis during atypical mitosis in male gametogenesis

    Get PDF
    The anaphase promoting complex/cyclosome (APC/C) is a highly conserved multi-subunit E3 ubiquitin ligase that controls mitotic division in eukaryotic cells by tagging cell cycle regulators for proteolysis. APC3 is a key component that contributes to APC/C function. Plasmodium, the causative agent of malaria, undergoes atypical mitotic division during its life cycle. Only a small subset of APC/C components has been identified in Plasmodium and their involvement in atypical cell division is not well understood. Here, using reverse genetics we examined the localisation and function of APC3 in Plasmodium berghei. APC3 was observed as a single focus that co-localised with the centriolar plaque during asexual cell division in schizonts, whereas it appeared as multiple foci in male gametocytes. Functional studies using gene disruption and conditional knockdown revealed essential roles of APC3 during these mitotic stages with loss resulting in a lack of chromosome condensation, abnormal cytokinesis and absence of microgamete formation. Overall, our data suggest that Plasmodium utilises unique cell cycle machinery to coordinate various processes during ndomitosis, and this warrants further investigation in future studies

    Phase II study of the farnesyltransferase inhibitor R115777 in advanced melanoma (CALGB 500104)

    Get PDF
    BACKGROUND: Multiple farnesylated proteins are involved in signal transduction in cancer. Farnesyltransferase inhibitors (FTIs) have been developed as a strategy to inhibit the function of these proteins. As FTIs inhibit proliferation of melanoma cell lines, we undertook a study to assess the impact of a FTI in advanced melanoma. As farnesylated proteins are also important for T cell activation, measurement of effects on T cell function was also pursued. METHODS: A 3-stage trial design was developed with a maximum of 40 patients and early stopping if there were no responders in the first 14, or fewer than 2 responders in the first 28 patients. Eligibility included performance status of 0–1, no prior chemotherapy, at most 1 prior immunotherapy, no brain metastases, and presence of at least 2 cutaneous lesions amenable to biopsy. R115777 was administered twice per day for 21 days of a 28-day cycle. Patients were evaluated every 2 cycles by RECIST. Blood and tumor were analyzed pre-treatment and during week 7. RESULTS: Fourteen patients were enrolled. Two patients had grade 3 toxicities, which included myelosuppression, nausea/vomiting, elevated BUN, and anorexia. There were no clinical responses. All patients analyzed showed potent inhibition of FT activity (85-98%) in tumor tissue; inhibition of phosphorylated ERK and Akt was also observed. T cells showed evidence of FT inhibition and diminished IFN-γ production. CONCLUSIONS: Despite potent target inhibition, R115777 showed no evidence of clinical activity in this cohort of melanoma patients. Inhibition of T cell function by FTIs has potential clinical implications. Clinicaltrials.gov number NCT0006012

    In vivo biosensing via tissue-localizable near-infrared-fluorescent single-walled carbon nanotubes

    Get PDF
    Single-walled carbon nanotubes are particularly attractive for biomedical applications, because they exhibit a fluorescent signal in a spectral region where there is minimal interference from biological media. Although single-walled carbon nanotubes have been used as highly sensitive detectors for various compounds, their use as in vivo biomarkers requires the simultaneous optimization of various parameters, including biocompatibility, molecular recognition, high fluorescence quantum efficiency and signal transduction. Here we show that a polyethylene glycol ligated copolymer stabilizes near-infrared-fluorescent single-walled carbon nanotubes sensors in solution, enabling intravenous injection into mice and the selective detection of local nitric oxide concentration with a detection limit of 1 µM. The half-life for liver retention is 4 h, with sensors clearing the lungs within 2 h after injection, thus avoiding a dominant route of in vivo nanotoxicology. After localization within the liver, it is possible to follow the transient inflammation using nitric oxide as a marker and signalling molecule. To this end, we also report a spatial-spectral imaging algorithm to deconvolute fluorescence intensity and spatial information from measurements. Finally, we demonstrate that alginate-encapsulated single-walled carbon nanotubes can function as implantable inflammation sensors for nitric oxide detection, with no intrinsic immune reactivity or other adverse response for more than 400 days.National Institutes of Health (U.S.) (T32 Training Grant in Environmental Toxicology ES007020)National Cancer Institute (U.S.) (Grant P01 CA26731)National Institute of Environmental Health Sciences (Grant P30 ES002109)Arnold and Mabel Beckman Foundation (Young Investigator Award)National Science Foundation (U.S.). Presidential Early Career Award for Scientists and EngineersScientific and Technological Research Council of Turkey (TUBITAK 2211 Research Fellowship Programme)Scientific and Technological Research Council of Turkey (TUBITAK 2214 Research Fellowship Programme)Middle East Technical University. Faculty Development ProgrammeSanofi Aventis (Firm) (Biomedical Innovation Grant

    Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.

    Get PDF
    Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or  ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention

    End-stage renal disease in young black males in a black-white population: longitudinal analysis of the Bogalusa Heart Study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Risk factors in childhood create a life-long burden important in the development of cardiovascular (CV) disease in adulthood. Many risk factors for CV disease (e.g., hypertension) also increase the risk of renal disease. However, the importance of childhood risk factors on the development of chronic kidney disease and end-stage renal disease (ESRD) is not well characterized.</p> <p>Methods</p> <p>The current observations include data from Bogalusa Heart Study participants who were examined multiple times as children between 1973 and 1988.</p> <p>Results</p> <p>Through 2006, fifteen study participants subsequently developed ESRD in adulthood; seven with no known overt cause. Although the Bogalusa Heart Study population is 63% white and 37% black and 51% male and 49% female, all seven ESRD cases with no known overt cause were black males (p < 0.001). Mean age-adjusted systolic and diastolic blood pressure in childhood was higher among the ESRD cases (114.5 mmHg and 70.1 mmHg, respectively) compared to black (103.0 mmHg and 62.3 mmHg, respectively) and white (mean = 103.3 mmHg and 62.3 mmHg, respectively) boys who didn't develop ESRD. The mean age-adjusted body mass index in childhood was 23.5 kg/m<sup>2 </sup>among ESRD cases and 18.6 kg/m<sup>2 </sup>and 18.9 kg/m<sup>2 </sup>among black and white boys who didn't develop ESRD, respectively. Plasma glucose in childhood was not significantly associated with ESRD.</p> <p>Conclusion</p> <p>These data suggest black males have an increased risk of ESRD in young adulthood. Elevated body mass index and blood pressure in childhood may increase the risk for developing ESRD as young adults.</p

    Elevated Cerebral Spinal Fluid Cytokine Levels in Boys with Cerebral Adrenoleukodystrophy Correlates with MRI Severity

    Get PDF
    Background: X-linked adrenoleukodystrophy (ALD) is a metabolic, peroxisomal disease that results from a mutation in the ABCD1 gene. The most severe course of ALD progression is the cerebral inflammatory and demyelinating form of the disease, cALD. To date there is very little information on the cytokine mediators in the cerebral spinal fluid (CSF) of these boys. Methodology/Principal Findings: Measurement of 23 different cytokines was performed on CSF and serum of boys with cerebral ALD and patients without ALD. Significant elevations in CSF IL-8 (29.362.2 vs 12.861.1 pg/ml, p = 0.0001), IL-1ra (166630 vs 8.666.5 pg/ml, p = 0.005), MCP-1 (610647 vs 328634 pg/ml, p = 0.002), and MIP-1b (14.261.3 vs 2.061.4 pg/ml, p,0.0001) were found in boys with cALD versus the control group. The only serum cytokine showing an elevation in the ALD group was SDF-1 (21246155 vs 11756125 pg/ml, p = 0.0001). The CSF cytokines of IL-8 and MCP-1b correlated with the Loes MRI severity score (p = 0.04 and p = 0.008 respectively), as well as the serum SDF-1 level (p = 0.002). Finally, CSF total protein was also significantly elevated in boys with cALD and correlated with both IL-8, MCP-1b (p = 0.0001 for both), as well as Loes MRI severity score (p = 0.0007). Conclusions/Significance: IL-8, IL-1ra, MCP-1, MIP-1b and CSF total protein were significantly elevated in patients with cALD; IL-8, MCP-1b, and CSF total protein levels correlated with disease severity determined by MRI. This is the largest repor
    corecore