371 research outputs found
Tbr1 instructs laminar patterning of retinal ganglion cell dendrites.
Visual information is delivered to the brain by >40 types of retinal ganglion cells (RGCs). Diversity in this representation arises within the inner plexiform layer (IPL), where dendrites of each RGC type are restricted to specific sublaminae, limiting the interneuronal types that can innervate them. How such dendritic restriction arises is unclear. We show that the transcription factor Tbr1 is expressed by four mouse RGC types with dendrites in the outer IPL and is required for their laminar specification. Loss of Tbr1 results in elaboration of dendrites within the inner IPL, while misexpression in other cells retargets their neurites to the outer IPL. Two transmembrane molecules, Sorcs3 and Cdh8, act as effectors of the Tbr1-controlled lamination program. However, they are expressed in just one Tbr1+ RGC type, supporting a model in which a single transcription factor implements similar laminar choices in distinct cell types by recruiting partially non-overlapping effectors
An inhibitory pull-push circuit in frontal cortex.
Push-pull is a canonical computation of excitatory cortical circuits. By contrast, we identify a pull-push inhibitory circuit in frontal cortex that originates in vasoactive intestinal polypeptide (VIP)-expressing interneurons. During arousal, VIP cells rapidly and directly inhibit pyramidal neurons; VIP cells also indirectly excite these pyramidal neurons via parallel disinhibition. Thus, arousal exerts a feedback pull-push influence on excitatory neurons-an inversion of the canonical push-pull of feedforward input
General Neutralino NLSPs at the Early LHC
Gauge mediated supersymmetry breaking (GMSB) is a theoretically
well-motivated framework with rich and varied collider phenomenology. In this
paper, we study the Tevatron limits and LHC discovery potential for a wide
class of GMSB scenarios in which the next-to-lightest superpartner (NLSP) is a
promptly-decaying neutralino. These scenarios give rise to signatures involving
hard photons, 's, 's, jets and/or higgses, plus missing energy. In order
to characterize these signatures, we define a small number of minimal spectra,
in the context of General Gauge Mediation, which are parameterized by the mass
of the NLSP and the gluino. Using these minimal spectra, we determine the most
promising discovery channels for general neutralino NLSPs. We find that the
2010 dataset can already cover new ground with strong production for all NLSP
types. With the upcoming 2011-2012 dataset, we find that the LHC will also have
sensitivity to direct electroweak production of neutralino NLSPs.Comment: 26 page
Tuning of Human Modulation Filters Is Carrier-Frequency Dependent
Licensed under the Creative Commons Attribution License
Comparative analysis of RNA sequencing methods for degraded or low-input samples
available in PMC 2014 January 01RNA-seq is an effective method for studying the transcriptome, but it can be difficult to apply to scarce or degraded RNA from fixed clinical samples, rare cell populations or cadavers. Recent studies have proposed several methods for RNA-seq of low-quality and/or low-quantity samples, but the relative merits of these methods have not been systematically analyzed. Here we compare five such methods using metrics relevant to transcriptome annotation, transcript discovery and gene expression. Using a single human RNA sample, we constructed and sequenced ten libraries with these methods and compared them against two control libraries. We found that the RNase H method performed best for chemically fragmented, low-quality RNA, and we confirmed this through analysis of actual degraded samples. RNase H can even effectively replace oligo(dT)-based methods for standard RNA-seq. SMART and NuGEN had distinct strengths for measuring low-quantity RNA. Our analysis allows biologists to select the most suitable methods and provides a benchmark for future method development.National Institutes of Health (U.S.) (Pioneer Award DP1-OD003958-01)National Human Genome Research Institute (U.S.) (NHGRI) 1P01HG005062-01)National Human Genome Research Institute (U.S.) (NHGRI Center of Excellence in Genome Science Award 1P50HG006193-01)Howard Hughes Medical Institute (Investigator)Merkin Family Foundation for Stem Cell ResearchBroad Institute of MIT and Harvard (Klarman Cell Observatory)National Human Genome Research Institute (U.S.) (NHGRI grant HG03067)Fonds voor Wetenschappelijk Onderzoek--Vlaandere
Resisting Sleep Pressure:Impact on Resting State Functional Network Connectivity
In today's 24/7 society, sleep restriction is a common phenomenon which leads to increased levels of sleep pressure in daily life. However, the magnitude and extent of impairment of brain functioning due to increased sleep pressure is still not completely understood. Resting state network (RSN) analyses have become increasingly popular because they allow us to investigate brain activity patterns in the absence of a specific task and to identify changes under different levels of vigilance (e.g. due to increased sleep pressure). RSNs are commonly derived from BOLD fMRI signals but studies progressively also employ cerebral blood flow (CBF) signals. To investigate the impact of sleep pressure on RSNs, we examined RSNs of participants under high (19 h awake) and normal (10 h awake) sleep pressure with three imaging modalities (arterial spin labeling, BOLD, pseudo BOLD) while providing confirmation of vigilance states in most conditions. We demonstrated that CBF and pseudo BOLD signals (measured with arterial spin labeling) are suited to derive independent component analysis based RSNs. The spatial map differences of these RSNs were rather small, suggesting a strong biological substrate underlying these networks. Interestingly, increased sleep pressure, namely longer time awake, specifically changed the functional network connectivity (FNC) between RSNs. In summary, all FNCs of the default mode network with any other network or component showed increasing effects as a function of increased 'time awake'. All other FNCs became more anti-correlated with increased 'time awake'. The sensorimotor networks were the only ones who showed a within network change of FNC, namely decreased connectivity as function of 'time awake'. These specific changes of FNC could reflect both compensatory mechanisms aiming to fight sleep as well as a first reduction of consciousness while becoming drowsy. We think that the specific changes observed in functional network connectivity could imply an impairment of information transfer between the affected RSNs
Recommended from our members
Quantitative analysis of the ACL and PCL using T1rho and T2 relaxation time mapping: an exploratory, cross-sectional comparison between OA and healthy control knees.
BACKGROUND: Quantitative magnetic resonance imaging (MRI) methods such as T1rho and T2 mapping are sensitive to changes in tissue composition, however their use in cruciate ligament assessment has been limited to studies of asymptomatic populations or patients with posterior cruciate ligament tears only. The aim of this preliminary study was to compare T1rho and T2 relaxation times of the anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) between subjects with mild-to-moderate knee osteoarthritis (OA) and healthy controls. METHODS: A single knee of 15 patients with mild-to-moderate knee OA (Kellgren-Lawrence grades 2-3) and of 6 age-matched controls was imaged using a 3.0 T MRI. Three-dimensional (3D) fat-saturated spoiled gradient recalled-echo images were acquired for morphological assessment and T1ρ- and T2-prepared pseudo-steady-state 3D fast spin echo images for compositional assessment of the cruciate ligaments. Manual segmentation of whole ACL and PCL, as well as proximal / middle / distal thirds of both ligaments was carried out by two readers using ITK-SNAP and mean relaxation times were recorded. Variation between thirds of the ligament were assessed using repeated measures ANOVAs and differences in these variations between groups using a Kruskal-Wallis test. Inter- and intra-rater reliability were assessed using intraclass correlation coefficients (ICCs). RESULTS: In OA knees, both T1rho and T2 values were significantly higher in the distal ACL when compared to the rest of the ligament with the greatest differences in T1rho (e.g. distal mean = 54.5 ms, proximal = 47.0 ms, p < 0.001). The variation of T2 values within the PCL was lower in OA knees (OA: distal vs middle vs proximal mean = 28.5 ms vs 29.1 ms vs 28.7 ms, p = 0.748; Control: distal vs middle vs proximal mean = 26.4 ms vs 32.7 ms vs 33.3 ms, p = 0.009). ICCs were excellent for the majority of variables. CONCLUSION: T1rho and T2 mapping of the cruciate ligaments is feasible and reliable. Changes within ligaments associated with OA may not be homogeneous. This study is an important step forward in developing a non-invasive, radiological biomarker to assess the ligaments in diseased human populations in-vivo.Declarations
Ethics approval and consent to participate
This study was approved by the East of England Cambridge Central Research Ethics Committee and written informed consent was given by all subjects included in the study. All methods were carried out in accordance with relevant guidelines and regulations.
Consent for publication
Not Applicable
Availability of data and materials
The datasets generated and analysed during the current study are not publicly available due to unattained permission from participants and research ethics committee but could be made available from JWM (email: [email protected]).
Competing interests
JWM, DAK and JDK acknowledge funding support from GlaxoSmithKline for their studentships and fellowships, respectively.
JWM is an employee of AstraZeneca.
CDSR, VAC and SMM have no competing interests to declare.
Acknowledgements
The Addenbrooke's Hospital Magnetic Resonance Imaging and Spectroscopy (MRIS) staff are thanked for their help with arranging and conducting the study MRI examinations. We also acknowledge the support of the Addenbrooke's Charitable Trust and the National Institute for Health Research Cambridge Biomedical Research Centre. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health and Social Care.
Funding
The study was funded by an Experimental Medicine Initiative PhD studentship from the University of Cambridge [grant number RG81329] and by GlaxoSmithKline [grant number RG87552].
Authors' contributions
Writing of original draft manuscript: CDSR. Study design and coordination: CDSR, JWM, JDK and SMM. Data acquisition: JWM and JDK. Data curation, analysis and interpretation: CDSR, JWM, VAC, JDK, DAK and SMM. Statistical analysis: CDSR and JWM. Review and editing of manuscript: JWM, VAC, JDK, DAK and SMM. All authors read and approved the final manuscript
Rapid selection of cyclic peptides that reduce alpha-synuclein toxicity in yeast and animal models
Phage display has demonstrated the utility of cyclic peptides as general protein ligands but cannot access proteins inside eukaryotic cells. Expanding a new chemical genetics tool, we describe the first expressed library of head-to-tail cyclic peptides in yeast (Saccharomyces cerevisiae). We applied the library to selections in a yeast model of alpha-synuclein toxicity that recapitulates much of the cellular pathology of Parkinson's disease. From a pool of 5 million transformants, we isolated two related cyclic peptide constructs that specifically reduced the toxicity of human alpha-synuclein. These expressed cyclic peptide constructs also prevented dopaminergic neuron loss in an established Caenorhabditis elegans Parkinson's model. This work highlights the speed and efficiency of using libraries of expressed cyclic peptides for forward chemical genetics in cellular models of human disease
Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.
Blood pressure is a heritable trait influenced by several biological pathways and responsive to environmental stimuli. Over one billion people worldwide have hypertension (≥140 mm Hg systolic blood pressure or ≥90 mm Hg diastolic blood pressure). Even small increments in blood pressure are associated with an increased risk of cardiovascular events. This genome-wide association study of systolic and diastolic blood pressure, which used a multi-stage design in 200,000 individuals of European descent, identified sixteen novel loci: six of these loci contain genes previously known or suspected to regulate blood pressure (GUCY1A3-GUCY1B3, NPR3-C5orf23, ADM, FURIN-FES, GOSR2, GNAS-EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score based on 29 genome-wide significant variants was associated with hypertension, left ventricular wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We also observed associations with blood pressure in East Asian, South Asian and African ancestry individuals. Our findings provide new insights into the genetics and biology of blood pressure, and suggest potential novel therapeutic pathways for cardiovascular disease prevention
Traditional electrosurgery and a low thermal injury dissection device yield different outcomes following bilateral skin-sparing mastectomy: a case report
<p>Abstract</p> <p>Introduction</p> <p>Although a skin- and nipple-sparing mastectomy technique offers distinct cosmetic and reconstructive advantages over traditional methods, partial skin flap and nipple necrosis remain a significant source of post-operative morbidity. Prior work has suggested that collateral thermal damage resulting from electrocautery use during skin flap development is a potential source of this complication. This report describes the case of a smoker with recurrent ductal carcinoma <it>in situ </it>(DCIS) who experienced significant unilateral skin necrosis following bilateral skin-sparing mastectomy while participating in a clinical trial examining mastectomy outcomes with two different surgical devices. This unexpected complication has implications for the choice of dissection devices in procedures requiring skin flap preservation.</p> <p>Case presentation</p> <p>The patient was a 61-year-old Caucasian woman who was a smoker with recurrent DCIS of her right breast. As part of the clinical trial, each breast was randomized to either the standard of care treatment group (a scalpel and a traditional electrosurgical device) or treatment with a novel, low thermal injury dissection device, allowing for a direct, internally controlled comparison of surgical outcomes. Post-operative follow-up at six days was unremarkable for both operative sites. At 16 days post-surgery, the patient presented with a significant wound necrosis in the mastectomy site randomized to the control study group. Following debridement and closure, this site progressively healed over 10 weeks. The contralateral mastectomy, randomized to the alternative device, healed normally.</p> <p>Conclusion</p> <p>We hypothesize that thermal damage to the subcutaneous microvasculature during flap dissection may have contributed to this complication and that the use of a low thermal injury dissection device may be advantageous in select patients undergoing skin- and nipple-sparing mastectomy.</p
- …
