21,133 research outputs found

    Gradient shadow pattern reveals refractive index of liquid

    Get PDF
    We propose a simple method that uses a gradient shadow pattern (GSP) to measure the refractive index n(L) of liquids. A light source generates a "dark-bright-dark" GSP when it is projected through through the back of a transparent, rectangular block with a cylindrical chamber that is filled with a liquid sample. We found that there is a linear relationship between nL and the proportion of the bright region in a GSP, which provides the basic principle of the proposed method. A wide range 1.33 <= n(L) <= 1.46 of liquids was measured in the single measurement setup with error < 0.01. The proposed method is simple but robust to illuminating conditions, and does not require for any expensive or precise optical components, so we expect that it will be useful in many portable measurement systems that use nL to estimate attributes of liquid samples.1110Ysciescopu

    Some identities on derangement and degenerate derangement polynomials

    Full text link
    In combinatorics, a derangement is a permutation that has no fixed points. The number of derangements of an n-element set is called the n-th derangement number. In this paper, as natural companions to derangement numbers and degenerate versions of the companions we introduce derangement polynomials and degenerate derangement polynomials. We give some of their properties, recurrence relations and identities for those polynomials which are related to some special numbers and polynomials.Comment: 12 page

    A serpentine laminating micromixer combining splitting/recombination and advection

    Get PDF
    Mixing enhancement has drawn great attention from designers of micromixers, since the flow in a microchannel is usually characterized by a low Reynolds number ( Re) which makes the mixing quite a difficult task to accomplish. In this paper, a novel integrated efficient micromixer named serpentine laminating micromixer (SLM) has been designed, simulated, fabricated and fully characterized. In the SLM, a high level of efficient mixing can be achieved by combining two general chaotic mixing mechanisms: splitting/recombination and chaotic advection. The splitting and recombination ( in other terms, lamination) mechanism is obtained by the successive arrangement of "F&apos;&apos;-shape mixing units in two layers. The advection is induced by the overall three-dimensional serpentine path of the microchannel. The SLM was realized by SU-8 photolithography, nickel electroplating, injection molding and thermal bonding. Mixing performance of the SLM was fully characterized numerically and experimentally. The numerical mixing simulations show that the advection acts favorably to realize the ideal vertical lamination of fluid flow. The mixing experiments based on an average mixing color intensity change of phenolphthalein show a high level of mixing performance was obtained with the SLM. Numerical and experimental results confirm that efficient mixing is successfully achieved from the SLM over the wide range of Re. Due to the simple and mass producible geometry of the efficient micromixer, SLM proposed in this study, the SLM can be easily applied to integrated microfluidic systems, such as micro-total-analysis-systems or lab-on-a-chip systems.X11159165sciescopu

    A Zeta (zeta)-Pipet Tip to Reduce the Spontaneously Induced Electrical Charge of a Dispensed Aqueous Droplet

    Get PDF
    We report that the zeta potential of a pipet tip&apos;s inner surface is one of the crucial parameters for controlling the electrical charge of the dispensed droplet. Since the charge is unexpected and undesirable for most experiments in various fields of science and, thereby, they can cause unsuspected problems, reducing the charge on a dispensed droplet is important for the results of pipetting-based experiments. We fabricate a graphene-based nanocomposite-coated pipet tip, which we called a zeta-pipet tip, as a proof-of-concept example to reduce the zeta potential of the pipet tip&apos;s inner surface. The fabricated zeta-pipet tip can successfully mitigate the undesired droplet separation in the droplet merging experiments in an oil bath, which is one of the unexpected effects caused by the electrification. The findings of this study provide helpful guidelines for researchers in many fields of science and technology, who utilize a pipet tip in their respective experiments.X111112Ysciescopu

    Controlled release of human growth hormone fused with a human hybrid Fc fragment through a nanoporous polymer membrane

    Get PDF
    Nanotechnology has been applied to the development of more effective and compatible drug delivery systems for therapeutic proteins. Human growth hormone (hGH) was fused with a hybrid Fc fragment containing partial Fc domains of human IgD and IgG(4) to produce a long-acting fusion protein. The fusion protein, hGH-hyFc, resulted in the increase of the hydrodynamic diameter (ca. 11 nm) compared with the diameter (ca. 5 nm) of the recombinant hGH. A diblock copolymer membrane with nanopores (average diameter of 14.3 nm) exhibited a constant release rate of hGH-hyFc. The hGH-hyFc protein released in a controlled manner for one month was found to trigger the phosphorylation of Janus kinase 2 (JAK2) in human B lymphocyte and to exhibit an almost identical circular dichroism spectrum to that of the original hGH-hyFc, suggesting that the released fusion protein should maintain the functional and structural integrity of hGH. Thus, the nanoporous release device could be a potential delivery system for the long-term controlled release of therapeutic proteins fused with the hybrid Fc fragment.X111313sciescopu

    A Simple Approach to Characterize Gas-Aqueous Liquid Two-phase Flow Configuration Based on Discrete Solid-Liquid Contact Electrification

    Get PDF
    In this study, we first suggest a simple approach to characterize configuration of gas-aqueous liquid two-phase flow based on discrete solid-liquid contact electrification, which is a newly defined concept as a sequential process of solid-liquid contact and successive detachment of the contact liquid from the solid surface. This approach exhibits several advantages such as simple operation, precise measurement, and cost-effectiveness. By using electric potential that is spontaneously generated by discrete solid-liquid contact electrification, the configurations of the gas-aqueous liquid two-phase flow such as size of a gas slug and flow rate are precisely characterized. According to the experimental and numerical analyses on parameters that affect electric potential, gas slugs have been verified to behave similarly to point electric charges when the measuring point of the electric potential is far enough from the gas slug. In addition, the configuration of the gas-aqueous liquid two-phase microfluidic system with multiple gas slugs is also characterized by using the presented approach. For a proof-of-concept demonstration of using the proposed approach in a selftriggered sensor, a gas slug detector with a counter system is developed to show its practicality and applicability.1122Ysciescopu

    Capacitive Control of Spontaneously Induced Electrical Charge of Droplet by Electric Field-Assisted Pipetting

    Get PDF
    The spontaneously generated electrical charge of a droplet dispensed from conventional pipetting is undesirable and unpredictable for most experiments that use pipetting. Hence, a method for controlling and removing the electrical charge needs to be developed. In this study, by using the electrode-deposited pipet tip (E-pipet tip), the charge-controlling system is newly developed and the electrical charge of a droplet is precisely controlled. The effect of electrolyte concentration and volume of the transferred solution to the electrical charge of a dispensed droplet is theoretically and experimentally investigated by using the equivalent capacitor model. Furthermore, a proof-of-concept example of the self-alignment and self-assembly of sequentially dispensed multiple droplets is demonstrated as one of the potential applications. Given that the electrical charge of the various aqueous droplets can be precisely and simply controlled, the fabricated E-pipet tip can be broadly utilized not only as a general charge-controlling platform of aqueous droplets but also as a powerful tool to explore fundamental scientific research regarding electrical charge of a droplet, such as the surface oscillation and evaporation of charged droplets.1143Ysciescopu

    Artificial Micro-Swimmers in Simulated Natural Environments

    Get PDF
    open11107sciescopu

    Curved Microneedle Array-Based sEMG Electrode for Robust Long-Term Measurements and High Selectivity

    Get PDF
    Surface electromyography is widely used in many fields to infer human intention. However, conventional electrodes are not appropriate for long-term measurements and are easily influenced by the environment, so the range of applications of sEMG is limited. In this paper, we propose a flexible band-integrated, curved microneedle array electrode for robust long-term measurements, high selectivity, and easy applicability. Signal quality, in terms of long-term usability and sensitivity to perspiration, was investigated. Its motion-discriminating performance was also evaluated. The results show that the proposed electrode is robust to perspiration and can maintain a high-quality measuring ability for over 8 h. The proposed electrode also has high selectivity for motion compared with a commercial wet electrode and dry electrode.open111615Ysciescopu
    corecore