7,583 research outputs found
Mathematical Analysis of Single and Two Phase Flow of Blood in Narrow Arteries with Multiple Contrictions
The pulsatile flow of blood in narrow arteries with multiple-stenoses under body acceleration is analyzed mathematically, treating blood as (i) single-phase Herschel-Bulkley fluid model and (ii) two-phase Herschel-Bulkley fluid model. The expressions for various flow quantities obtained by Sankar and Ismail (2010) for single-phase Herschel-Bulkley fluid model and Sankar (2010c) for two-phase Herschel-Bulkley fluid model are used to compute the data for comparing these fluid models in a new flow geometry. It is noted that the plug core radius, wall shear stress and longitudinal impedance to flow are marginally lower for two-phase H-B fluid model than those of the single-phase H-B fluid model. It is found that the velocity decreases significantly with the increase yield stress of the fluid and the reverse behavior is noticed for longitudinal impedance to flow. It is also noticed that the velocity distribution and flow rate are higher for two-phase Herschel-Bulkley fluid model than those of the single-phase Herschel-Bulkley fluid model. It is also recorded that the estimates of the mean velocity increase with the increase of the body acceleration and this behavior is reversed when the stenosis depth increases
Charge Lattices and Consistency of 6D Supergravity
We extend the known consistency conditions on the low-energy theory of
six-dimensional N = 1 supergravity. We review some facts about the theory of
two-form gauge fields and conclude that the charge lattice Gamma for such a
theory has to be self-dual. The Green-Schwarz anomaly cancellation conditions
in the supergravity theory determine a sublattice of Gamma. The condition that
this sublattice can be extended to a self-dual lattice Gamma leads to a strong
constraint on theories that otherwise appear to be self-consistent.Comment: 15 pages. v2: minor changes; references, additional example added;
v3: minor corrections and clarifications added, JHEP versio
Chemical characterization of atmospheric particulate matter in Delhi, India, part II: Source apportionment studies using PMF 3.0
World Bank reports Delhi as a second most polluted megacity in the world for particulates pollution. In Delhi, PM10 (d ≤ 10 μm) aerosol samples were monitored throughout 2008 and their characterization for major chemical elements (Na, Mg, Al, Si, P, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Br, Sr, Ba, Pb, Cd, Sn and Sb) and ions (Cl-, NO3-, SO42-, Na+, NH4+, K+, Mg2+ and Ca2+) have been documented in an earlier study. To resolve complexity in source apportionment for chemical constituents in PM10, UNMIX 6.0 and Positive Matrix Factorization (PMF 3.0) models are applied. Four factors were derived to explain routine sources of PM10 (crustal origin, road-traffic and secondary aerosols). Factor-1, designated as road-traffic source, has been determined by temporal correlation among Pb, Cu, Zn, Ni and V with strong correlation between Pb and Zn. This source factor-1 has shown more than 60% contribution to receptor site. Factor-2, referred as crustal origin due to strong inter-relationship among Si, Fe, Al, Ca and Mg, has also shown to be significant contribution to similar species in receptor matrix. Factor-3 ( NH4+, NO3-) has been differentiated due to contribution of secondary aerosols in the receptor region. This factor-3 has indicated major fraction of these ionic species for their uniform percentage variability, where mean values have been projected close to 75th percentile. Surprisingly, source factor-4 has explained the specific chloride source in the region with major contribution of 86%. For policymakers, results presented would serve as benchmark of source apportionments in Delhi
Recommended from our members
Level of evidence used in recommendations by the National Comprehensive Cancer Network (NCCN) guidelines beyond Food and Drug Administration approvals.
BackgroundA previous analysis of 113 National Comprehensive Cancer Network® (NCCN®) recommendations reported that NCCN frequently recommends beyond Food and Drug Administration (FDA)-approved indications (44 off-label recommendations) and claimed that the evidence for these recommendations was weak.MethodsIn order to determine the strength of the evidence, we carried out an in-depth re-analysis of the 44 off-label recommendations listed in the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®).ResultsOf the 44 off-label recommendations, 14 were later approved by the FDA and/or are supported by randomized controlled trial (RCT) data. In addition, 13 recommendations were either very minor extrapolations from the FDA label (n = 8) or were actually on-label (n = 5). Of the 17 remaining extrapolations, 8 were for mechanism-based agents applied in rare cancers or subsets with few available treatment options (median response rate = 43%), 7 were based on non-RCT data showing significant efficacy (>50% response rates), and 2 were later removed from the NCCN Guidelines because newer therapies with better activity and/or safety became available.ConclusionOff-label drug use is a frequent component of care for patients with cancer in the United States. Our findings indicate that when the NCCN recommends beyond the FDA-approved indications, the strength of the evidence supporting such recommendations is robust, with a significant subset of these drugs later becoming FDA approved or supported by RCT. Recommendations without RCT data are often for mechanism-based drugs with high response rates in rare cancers or subsets without effective therapies
Asymmetry to symmetry transition of Fano line-shape: Analytical derivation
An analytical derivation of Fano line-shape asymmetry ratio has been
presented here for a general case. It is shown that Fano line-shape becomes
less asymmetric as \q is increased and finally becomes completely symmetric in
the limiting condition of q equal to infinity. Asymmetry ratios of Fano
line-shapes have been calculated and are found to be in good consonance with
the reported expressions for asymmetry ratio as a function of Fano parameter.
Application of this derivation is also mentioned for explanation of asymmetry
to symmetry transition of Fano line-shape in quantum confined silicon
nanostructures.Comment: 3 figures, Latex files, Theoretica
対流圏に見られる鉛直微細構造
We report the design, synthesis, detailed characterization, and analysis of a new multifunctional pi-conjugated bola-amphiphilic chromophore: oligo-(p-phenyleneethynylene)-dicarboxylic acid with dialkoxyoctadecyl side chains (OPE-C-18-1). OPE-C-18-1 shows two polymorphs at 123 K (OPE-C-18-1') and 373 K (OPE-C-18-1 `'), whose crystal structures were characterized via single crystal X-ray diffraction. OPE-C-18-1 also exhibits thermotropic liquid crystalline property revealing a columnar phase. The inherent pi-conjugation of OPE-C-18-1 imparts luminescence to the system. Photoluminescence measurements on the mesophase also reveal similar luminescence as in the crystalline state. Additionally, OPE-C-18-1 shows mechano-hypsochromic luminescence behavior. Density functional theory (DFT)-based calculations unravel the origins behind the simultaneous existence of all these properties. Nanoindentation experiments on the single crystal reveal its mechanical strength and accurately correlate the molecular arrangement with the liquid crystalline and mechanochromic luminescence behavior
Characterisation of atmospheric aerosol by SEM-EDX and Ion-chromatography techniques for eastern Indo-Gangetic plain location, Varanasi, India
Atmospheric aerosol consists of both natural and anthropogenic origin. Studies have shown that continuous exposure to these particles is associated with a high percentage of death from respiratory and cardiovascular disease. In the present study, we have first time used both SEM-EDX analysis as well as chemical analysis to understand the differences in morphology and elemental composition of aerosols sample from a suburban clean and green area of Banaras Hindu University campus and some much polluted urban areas of the Varanasi city situated in the eastern Indo-Gangetic plain. The analysis was done by using scanning
electron microscope (SEM) coupled with energy dispersive X-ray microanalyzer (EDX) and ionchromatography (IC). Analyses show that C, Ca, Na, S, Si, Al have dominated the sample
F-Theory and the Mordell-Weil Group of Elliptically-Fibered Calabi-Yau Threefolds
The Mordell-Weil group of an elliptically fibered Calabi-Yau threefold X
contains information about the abelian sector of the six-dimensional theory
obtained by compactifying F-theory on X. After examining features of the
abelian anomaly coefficient matrix and U(1) charge quantization conditions of
general F-theory vacua, we study Calabi-Yau threefolds with Mordell-Weil
rank-one as a first step towards understanding the features of the Mordell-Weil
group of threefolds in more detail. In particular, we generate an interesting
class of F-theory models with U(1) gauge symmetry that have matter with both
charges 1 and 2. The anomaly equations --- which relate the Neron-Tate height
of a section to intersection numbers between the section and fibral rational
curves of the manifold --- serve as an important tool in our analysis.Comment: 29 pages + appendices, 5 figures; v2: minor correction
Six-dimensional (1,0) effective action of F-theory via M-theory on Calabi-Yau threefolds
The six-dimensional effective action of F-theory compactified on a singular
elliptically fibred Calabi-Yau threefold is determined by using an M-theory
lift. The low-energy data are derived by comparing a circle reduction of a
general six-dimensional (1,0) gauged supergravity theory with the effective
action of M-theory on the resolved Calabi-Yau threefold. The derivation
includes six-dimensional tensor multiplets for which the (anti-) self-duality
constraints are imposed on the level of the five-dimensional action. The vector
sector of the reduced theory is encoded by a non-standard potential due to the
Green-Schwarz term in six dimensions. This Green-Schwarz term also contains
higher curvature couplings which are considered to establish the full map
between anomaly coefficients and geometry. F-/M-theory duality is exploited by
moving to the five-dimensional Coulomb branch after circle reduction and
integrating out massive vector multiplets and matter hypermultiplets. The
associated fermions then generate additional Chern-Simons couplings at
one-loop. Further couplings involving the graviphoton are induced by quantum
corrections due to excited Kaluza-Klein modes. On the M-theory side integrating
out massive fields corresponds to resolving the singularities of the Calabi-Yau
threefold, and yields intriguing relations between six-dimensional anomalies
and classical topology.Comment: 55 pages, v2: typos corrected, discussion of loop corrections
improve
- …
