581 research outputs found

    Apraxia and motor dysfunction in corticobasal syndrome

    Get PDF
    Background: Corticobasal syndrome (CBS) is characterized by multifaceted motor system dysfunction and cognitive disturbance; distinctive clinical features include limb apraxia and visuospatial dysfunction. Transcranial magnetic stimulation (TMS) has been used to study motor system dysfunction in CBS, but the relationship of TMS parameters to clinical features has not been studied. The present study explored several hypotheses; firstly, that limb apraxia may be partly due to visuospatial impairment in CBS. Secondly, that motor system dysfunction can be demonstrated in CBS, using threshold-tracking TMS, and is linked to limb apraxia. Finally, that atrophy of the primary motor cortex, studied using voxel-based morphometry analysis (VBM), is associated with motor system dysfunction and limb apraxia in CBS.   Methods: Imitation of meaningful and meaningless hand gestures was graded to assess limb apraxia, while cognitive performance was assessed using the Addenbrooke's Cognitive Examination - Revised (ACE-R), with particular emphasis placed on the visuospatial subtask. Patients underwent TMS, to assess cortical function, and VBM.   Results: In total, 17 patients with CBS (7 male, 10 female; mean age 64.4+/2 6.6 years) were studied and compared to 17 matched control subjects. Of the CBS patients, 23.5% had a relatively inexcitable motor cortex, with evidence of cortical dysfunction in the remaining 76.5% patients. Reduced resting motor threshold, and visuospatial performance, correlated with limb apraxia. Patients with a resting motor threshold <50% performed significantly worse on the visuospatial sub-task of the ACE-R than other CBS patients. Cortical function correlated with atrophy of the primary and pre-motor cortices, and the thalamus, while apraxia correlated with atrophy of the pre-motor and parietal cortices.   Conclusions: Cortical dysfunction appears to underlie the core clinical features of CBS, and is associated with atrophy of the primary motor and pre-motor cortices, as well as the thalamus, while apraxia correlates with pre-motor and parietal atrophy

    Synthesis and preliminary assessment of the anticancer and Wnt/β-catenin inhibitory activity of small amide libraries of fenamates and profens

    Get PDF
    As part of an ongoing program to study the anticancer activity of non-steroidal anti-inflammatory drugs (NSAIDs) through generating diversity libraries of multiple NSAID scaffolds, we synthesized a series of NSAID amide derivatives and screened these sets against three cancer cell lines (prostate, colon and breast) and Wnt/β-catenin signaling. The evaluated amide analog libraries show significant anticancer activity/cell proliferation inhibition, and specific members of the sets show inhibition of Wnt/β-catenin signaling.</p

    Multi-locus genome-wide association analysis supports the role of glutamatergic synaptic transmission in the etiology of major depressive disorder

    Get PDF
    Major depressive disorder (MDD) is a common psychiatric illness characterized by low mood and loss of interest in pleasurable activities. Despite years of effort, recent genome-wide association studies (GWAS) have identified few susceptibility variants or genes that are robustly associated with MDD. Standard single-SNP (single nucleotide polymorphism)-based GWAS analysis typically has limited power to deal with the extensive heterogeneity and substantial polygenic contribution of individually weak genetic effects underlying the pathogenesis of MDD. Here, we report an alternative, gene-set-based association analysis of MDD in an effort to identify groups of biologically related genetic variants that are involved in the same molecular function or cellular processes and exhibit a significant level of aggregated association with MDD. In particular, we used a text-mining-based data analysis to prioritize candidate gene sets implicated in MDD and conducted a multi-locus association analysis to look for enriched signals of nominally associated MDD susceptibility loci within each of the gene sets. Our primary analysis is based on the meta-analysis of three large MDD GWAS data sets (total N = 4346 cases and 4430 controls). After correction for multiple testing, we found that genes involved in glutamatergic synaptic neurotransmission were significantly associated with MDD (set-based association P = 6.9 X 10(-4)). This result is consistent with previous studies that support a role of the glutamatergic system in synaptic plasticity and MDD and support the potential utility of targeting glutamatergic neurotransmission in the treatment of MDD

    The Evolution of Religion: How Cognitive By-Products, Adaptive Learning Heuristics, Ritual Displays, and Group Competition Generate Deep Commitments to Prosocial Religio

    Get PDF
    Understanding religion requires explaining why supernatural beliefs, devotions, and rituals are both universal and variable across cultures, and why religion is so often associated with both large-scale cooperation and enduring group conflict. Emerging lines of research suggest that these oppositions result from the convergence of three processes. First, the interaction of certain reliably developing cognitive processes, such as our ability to infer the presence of intentional agents, favors—as an evolutionary by-product—the spread of certain kinds of counterintuitive concepts. Second, participation in rituals and devotions involving costly displays exploits various aspects of our evolved psychology to deepen people's commitment to both supernatural agents and religious communities. Third, competition among societies and organizations with different faith-based beliefs and practices has increasingly connected religion with both within-group prosociality and between-group enmity. This connection has strengthened dramatically in recent millennia, as part of the evolution of complex societies, and is important to understanding cooperation and conflict in today's world

    Suppression of MAPK11 or HIPK3 reduces mutant Huntingtin levels in Huntington's disease models.

    Get PDF
    Most neurodegenerative disorders are associated with accumulation of disease-relevant proteins. Among them, Huntington disease (HD) is of particular interest because of its monogenetic nature. HD is mainly caused by cytotoxicity of the defective protein encoded by the mutant Huntingtin gene (HTT). Thus, lowering mutant HTT protein (mHTT) levels would be a promising treatment strategy for HD. Here we report two kinases HIPK3 and MAPK11 as positive modulators of mHTT levels both in cells and in vivo. Both kinases regulate mHTT via their kinase activities, suggesting that inhibiting these kinases may have therapeutic values. Interestingly, their effects on HTT levels are mHTT-dependent, providing a feedback mechanism in which mHTT enhances its own level thus contributing to mHTT accumulation and disease progression. Importantly, knockout of MAPK11 significantly rescues disease-relevant behavioral phenotypes in a knockin HD mouse model. Collectively, our data reveal new therapeutic entry points for HD and target-discovery approaches for similar diseases

    Activity-based E3 ligase profiling uncovers an E3 ligase with esterification activity

    Get PDF
    Ubiquitination is initiated by transfer of ubiquitin (Ub) from a ubiquitin-activating enzyme (E1) to a ubiquitin-conjugating enzyme (E2), producing a covalently linked intermediate (E2-Ub)(1). Ubiquitin ligases (E3s) of the 'really interesting new gene' (RING) class recruit E2-Ub via their RING domain and then mediate direct transfer of ubiquitin to substrates(2). By contrast, 'homologous to E6-AP carboxy terminus' (HECT) E3 ligases undergo a catalytic cysteine-dependent transthiolation reaction with E2-Ub, forming a covalent E3-Ub intermediate(3,4). Additionally, RING-between-RING (RBR) E3 ligases have a canonical RING domain that is linked to an ancillary domain. This ancillary domain contains a catalytic cysteine that enables a hybrid RING-HECT mechanism(5). Ubiquitination is typically considered a post-translational modification of lysine residues, as there are no known human E3 ligases with non-lysine activity. Here we perform activity-based protein profiling of HECT or RBR-like E3 ligases and identify the neuron-associated E3 ligase MYCBP2 (also known as PHR1) as the apparent single member of a class of RING-linked E3 ligase with esterification activity and intrinsic selectivity for threonine over serine. MYCBP2 contains two essential catalytic cysteine residues that relay ubiquitin to its substrate via thioester intermediates. Crystallographic characterization of this class of E3 ligase, which we designate RING-Cys-relay (RCR), provides insights into its mechanism and threonine selectivity. These findings implicate non-lysine ubiquitination in cellular regulation of higher eukaryotes and suggest that E3 enzymes have an unappreciated mechanistic diversity

    TBK1 Kinase Addiction in Lung Cancer Cells Is Mediated via Autophagy of Tax1bp1/Ndp52 and Non-Canonical NF-kappa B Signalling

    Get PDF
    K-Ras dependent non-small cell lung cancer (NSCLC) cells are 'addicted' to basal autophagy that reprograms cellular metabolism in a lysosomal-sensitive manner. Here we demonstrate that the xenophagy-associated kinase TBK1 drives basal autophagy, consistent with its known requirement in K-Ras-dependent NSCLC proliferation. Furthermore, basal autophagy in this context is characterised by sequestration of the xenophagy cargo receptor Ndp52 and its paralogue Tax1bp1, which we demonstrate here to be a bona fide cargo receptor. Autophagy of these cargo receptors promotes non-canonical NF-κB signalling. We propose that this TBK1-dependent mechanism for NF-κB signalling contributes to autophagy addiction in K-Ras driven NSCLC

    Current and prospective pharmacological targets in relation to antimigraine action

    Get PDF
    Migraine is a recurrent incapacitating neurovascular disorder characterized by unilateral and throbbing headaches associated with photophobia, phonophobia, nausea, and vomiting. Current specific drugs used in the acute treatment of migraine interact with vascular receptors, a fact that has raised concerns about their cardiovascular safety. In the past, α-adrenoceptor agonists (ergotamine, dihydroergotamine, isometheptene) were used. The last two decades have witnessed the advent of 5-HT1B/1D receptor agonists (sumatriptan and second-generation triptans), which have a well-established efficacy in the acute treatment of migraine. Moreover, current prophylactic treatments of migraine include 5-HT2 receptor antagonists, Ca2+ channel blockers, and β-adrenoceptor antagonists. Despite the progress in migraine research and in view of its complex etiology, this disease still remains underdiagnosed, and available therapies are underused. In this review, we have discussed pharmacological targets in migraine, with special emphasis on compounds acting on 5-HT (5-HT1-7), adrenergic (α1, α2, and β), calcitonin gene-related peptide (CGRP 1 and CGRP2), adenosine (A1, A2, and A3), glutamate (NMDA, AMPA, kainate, and metabotropic), dopamine, endothelin, and female hormone (estrogen and progesterone) receptors. In addition, we have considered some other targets, including gamma-aminobutyric acid, angiotensin, bradykinin, histamine, and ionotropic receptors, in relation to antimigraine therapy. Finally, the cardiovascular safety of current and prospective antimigraine therapies is touched upon

    Early-life predictors of resilience and related outcomes up to 66 years later in the 6-day sample of the 1947 Scottish mental survey.

    Get PDF
    PURPOSE: Psychological resilience, the ability to manage and quickly recover from stress and trauma, is associated with a range of health and wellbeing outcomes. Resilience is known to relate to personality, self-esteem and positive affect, and may also depend upon childhood experience and stress. In this study, we investigated the role of early-life contributors to resilience and related factors in later life. METHODS: We used data from the 6-day sample of the Scottish mental survey 1947, an initially representative sample of Scottish children born in 1936. They were assessed on a range of factors between the ages of 11 and 27 years, and resilience and other outcomes at 77 years. RESULTS: Higher adolescent dependability unexpectedly predicted lower resilience in older-age, as did childhood illnesses, while a count of specific stressors experienced throughout early life significantly predicted higher later-life resilience. We also observed significant cross-sectional correlations between resilience and measures of physical health, mental health, wellbeing and loneliness. Some of the associations between early-life predictors and later-life outcomes were significantly mediated by resilience. CONCLUSIONS: Our results support the hypothesis that stress throughout early life may help to build resilience in later-life, and demonstrate the importance of resilience as a mediator of other influences on health and wellbeing in older age. We suggest that the mechanisms determining how early-life stress leads to higher resilience are worthy of further investigation, and that psychological resilience should be a focus of research and a target for therapeutic interventions aiming to improve older-age health and wellbeing

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac
    corecore