23 research outputs found
Phosphatidylinositol 3'-kinase, mTOR, and Glycogen synthase kinase-3β mediated regulation of p21 in human urothelial carcinoma cells
H3K9me2/3 Binding of the MBT Domain Protein LIN-61 Is Essential for Caenorhabditis elegans Vulva Development
MBT domain proteins are involved in developmental processes and tumorigenesis. In vitro binding and mutagenesis studies have shown that individual MBT domains within clustered MBT repeat regions bind mono- and dimethylated histone lysine residues with little to no sequence specificity but discriminate against the tri- and unmethylated states. However, the exact function of promiscuous histone methyl-lysine binding in the biology of MBT domain proteins has not been elucidated. Here, we show that the Caenorhabditis elegans four MBT domain protein LIN-61, in contrast to other MBT repeat factors, specifically interacts with histone H3 when methylated on lysine 9, displaying a strong preference for di- and trimethylated states (H3K9me2/3). Although the fourth MBT repeat is implicated in this interaction, H3K9me2/3 binding minimally requires MBT repeats two to four. Further, mutagenesis of residues conserved with other methyl-lysine binding MBT regions in the fourth MBT repeat does not abolish interaction, implicating a distinct binding mode. In vivo, H3K9me2/3 interaction of LIN-61 is required for C. elegans vulva development within the synMuvB pathway. Mutant LIN-61 proteins deficient in H3K9me2/3 binding fail to rescue lin-61 synMuvB function. Also, previously identified point mutant synMuvB alleles are deficient in H3K9me2/3 interaction although these target residues that are outside of the fourth MBT repeat. Interestingly, lin-61 genetically interacts with two other synMuvB genes, hpl-2, an HP1 homologous H3K9me2/3 binding factor, and met-2, a SETDB1 homologous H3K9 methyl transferase (H3K9MT), in determining C. elegans vulva development and fertility. Besides identifying the first sequence specific and di-/trimethylation binding MBT domain protein, our studies imply complex multi-domain regulation of ligand interaction of MBT domains. Our results also introduce a mechanistic link between LIN-61 function and biology, and they establish interplay of the H3K9me2/3 binding proteins, LIN-61 and HPL-2, as well as the H3K9MT MET-2 in distinct developmental pathways
An Immune- and Hormone-Dependent Phase During the Latency Period of SV40 Oncogenesis in Syrian Hamsters
A Computational Hypothesis on How Serotonin Regulates Catecholamines in the Pathogenesis of Depressive Apathy
Not All Antidepressants Are Created Equal: Differential Effects of Monoamine Uptake Inhibitors on Effort-Related Choice Behavior
Chimpanzee-Specific Endogenous Retrovirus Generates Genomic Variations in the Chimpanzee Genome
Endogenous retroviruses (ERVs), eukaryotic transposable elements, exist as proviruses in vertebrates including primates and contribute to genomic changes during the evolution of their host genomes. Many studies about ERVs have focused on the elements residing in the human genome but only a few studies have focused on the elements which exist in non-human primate genomes. In this study, we identified 256 chimpanzee-specific endogenous retrovirus copies (PtERVs: Pan troglodyte endogenous retroviruses) from the chimpanzee reference genome sequence through comparative genomics. Among the chimpanzee-specific ERV copies, 121 were full-length chimpanzee-specific ERV elements while 110 were chimpanzee-specific solitary LTR copies. In addition, we found eight potential retrotransposition-competent full-length chimpanzee-specific ERV copies containing an intact env gene, and two of them were polymorphic in chimpanzee individuals. Through computational analysis and manual inspection, we found that some of the chimpanzee-specific ERVs have propagated via non-classical PtERV insertion (NCPI), and at least one of the PtERVs may have played a role in creating an alternative transcript of a chimpanzee gene. Based on our findings in this study, we state that the chimpanzee-specific ERV element is one of the sources of chimpanzee genomic variations, some of which might be related to the alternative transcripts in the chimpanzee population
