1,066 research outputs found
Accurate masses and radii of normal stars: modern results and applications
This paper presents and discusses a critical compilation of accurate,
fundamental determinations of stellar masses and radii. We have identified 95
detached binary systems containing 190 stars (94 eclipsing systems, and alpha
Centauri) that satisfy our criterion that the mass and radius of both stars be
known to 3% or better. To these we add interstellar reddening, effective
temperature, metal abundance, rotational velocity and apsidal motion
determinations when available, and we compute a number of other physical
parameters, notably luminosity and distance. We discuss the use of this
information for testing models of stellar evolution. The amount and quality of
the data also allow us to analyse the tidal evolution of the systems in
considerable depth, testing prescriptions of rotational synchronisation and
orbital circularisation in greater detail than possible before. The new data
also enable us to derive empirical calibrations of M and R for single (post-)
main-sequence stars above 0.6 M(Sun). Simple, polynomial functions of T(eff),
log g and [Fe/H] yield M and R with errors of 6% and 3%, respectively.
Excellent agreement is found with independent determinations for host stars of
transiting extrasolar planets, and good agreement with determinations of M and
R from stellar models as constrained by trigonometric parallaxes and
spectroscopic values of T(eff) and [Fe/H]. Finally, we list a set of 23
interferometric binaries with masses known to better than 3%, but without
fundamental radius determinations (except alpha Aur). We discuss the prospects
for improving these and other stellar parameters in the near future.Comment: 56 pages including figures and tables. To appear in The Astronomy and
Astrophysics Review. Ascii versions of the tables will appear in the online
version of the articl
QCD-like theories at nonzero temperature and density
We investigate the properties of hot and/or dense matter in QCD-like theories
with quarks in a (pseudo)real representation of the gauge group using the
Nambu-Jona-Lasinio model. The gauge dynamics is modeled using a simple lattice
spin model with nearest-neighbor interactions. We first keep our discussion as
general as possible, and only later focus on theories with adjoint quarks of
two or three colors. Calculating the phase diagram in the plane of temperature
and quark chemical potential, it is qualitatively confirmed that the critical
temperature of the chiral phase transition is much higher than the
deconfinement transition temperature. At a chemical potential equal to half of
the diquark mass in the vacuum, a diquark Bose-Einstein condensation (BEC)
phase transition occurs. In the two-color case, a Ginzburg-Landau expansion is
used to study the tetracritical behavior around the intersection point of the
deconfinement and BEC transition lines, which are both of second order. We
obtain a compact expression for the expectation value of the Polyakov loop in
an arbitrary representation of the gauge group (for any number of colors),
which allows us to study Casimir scaling at both nonzero temperature and
chemical potential.Comment: JHEP class, 31 pages, 7 eps figures; v2: error in Eq. (3.11) fixed,
two references added; matches published versio
Serum microRNA array analysis identifies miR-140-3p, miR-33b-3p and miR-671-3p as potential osteoarthritis biomarkers involved in metabolic processes.
Background: MicroRNAs (miRNAs) in circulation have emerged as promising biomarkers. In this study, we aimed to identify a circulating miRNA signature for osteoarthritis (OA) patients and in combination with bioinformatics analysis to evaluate the utility of selected differentially expressed miRNAs in the serum as potential OA biomarkers. Methods: Serum samples were collected from 12 primary OA patients, and 12 healthy individuals were screened using the Agilent Human miRNA Microarray platform interrogating 2549 miRNAs. Receiver Operating Characteristic (ROC) curves were constructed to evaluate the diagnostic performance of the deregulated miRNAs. Expression levels of selected miRNAs were validated by quantitative real-time PCR (qRT-PCR) in all serum and in articular cartilage samples from OA patients (n = 12) and healthy individuals (n = 7). Bioinformatics analysis was used to investigate the involved pathways and target genes for the above miRNAs. Results: We identified 279 differentially expressed miRNAs in the serum of OA patients compared to controls. Two hundred and five miRNAs (73.5%) were upregulated and 74 (26.5%) downregulated. ROC analysis revealed that 77 miRNAs had area under the curve (AUC) > 0.8 and p < 0.05. Bioinformatics analysis in the 77 miRNAs revealed that their target genes were involved in multiple signaling pathways associated with OA, among which FoxO, mTOR, Wnt, pI3K/akt, TGF-β signaling pathways, ECM-receptor interaction, and fatty acid biosynthesis. qRT-PCR validation in seven selected out of the 77 miRNAs revealed 3 significantly downregulated miRNAs (hsa-miR-33b-3p, hsa-miR-671-3p, and hsa-miR-140-3p) in the serum of OA patients, which were in silico predicted to be enriched in pathways involved in metabolic processes. Target-gene analysis of hsa-miR-140-3p, hsa-miR-33b-3p, and hsa-miR-671-3p revealed that InsR and IGFR1 were common targets of all three miRNAs, highlighting their involvement in regulation of metabolic processes that contribute to OA pathology. Hsa-miR-140-3p and hsa-miR-671-3p expression levels were consistently downregulated in articular cartilage of OA patients compared to healthy individuals. Conclusions: A serum miRNA signature was established for the first time using high density resolution miR-arrays in OA patients. We identified a three-miRNA signature, hsa-miR-140-3p, hsa-miR-671-3p, and hsa-miR-33b-3p, in the serum of OA patients, predicted to regulate metabolic processes, which could serve as a potential biomarker for the evaluation of OA risk and progression.Peer reviewedFinal Published versio
Noiseless Linear Amplification and Distillation of Entanglement
The idea of signal amplification is ubiquitous in the control of physical
systems, and the ultimate performance limit of amplifiers is set by quantum
physics. Increasing the amplitude of an unknown quantum optical field, or more
generally any harmonic oscillator state, must introduce noise. This linear
amplification noise prevents the perfect copying of the quantum state, enforces
quantum limits on communications and metrology, and is the physical mechanism
that prevents the increase of entanglement via local operations. It is known
that non-deterministic versions of ideal cloning and local entanglement
increase (distillation) are allowed, suggesting the possibility of
non-deterministic noiseless linear amplification. Here we introduce, and
experimentally demonstrate, such a noiseless linear amplifier for
continuous-variables states of the optical field, and use it to demonstrate
entanglement distillation of field-mode entanglement. This simple but powerful
circuit can form the basis of practical devices for enhancing quantum
technologies. The idea of noiseless amplification unifies approaches to cloning
and distillation, and will find applications in quantum metrology and
communications.Comment: Submitted 10 June 200
A model of professional self-identity formation in student doctors and dentists: a mixed method study.
BACKGROUND: Professional self-identity [PSI] can be defined as the degree to which an individual identifies with his or her professional group. Several authors have called for a better understanding of the processes by which healthcare students develop their professional identities, and suggested helpful theoretical frameworks borrowed from the social science and psychology literature. However to our knowledge, there has been little empirical work examining these processes in actual healthcare students, and we are aware of no data driven description of PSI development in healthcare students. Here, we report a data driven model of PSI formation in healthcare students. METHODS: We interviewed 17 student doctors and dentists who had indicated, on a tracking questionnaire, the most substantial changes in their PSI. We analysed their perceptions of the experiences that had influenced their PSI, to develop a descriptive model. Both the primary coder and the secondary coder considered the data without reference to the existing literature; i.e. we used a bottom up approach rather than a top down approach. RESULTS: The results indicate that two overlapping frames of reference affect PSI formation: the students' self-perception and their perception of the professional role. They are 'learning' both; neither is static. Underpinning those two learning processes, the following key mechanisms operated: [1] When students are allowed to participate in the professional role they learn by trying out their knowledge and skill in the real world and finding out to what extent they work, and by trying to visualise themselves in the role. [2] When others acknowledge students as quasi-professionals they experience transference and may respond with counter-transference by changing to meet expectations or fulfil a prototype. [3] Students may also dry-run their professional role (i.e., independent practice of professional activities) in a safe setting when invited. CONCLUSIONS: Students' experiences, and their perceptions of those experiences, can be evaluated through a simple model that describes and organises the influences and mechanisms affecting PSI. This empirical model is discussed in the light of prevalent frameworks from the social science and psychology literature
Thermodynamics of SU(N) Yang-Mills theories in 2+1 dimensions II - The deconfined phase
We present a non-perturbative study of the equation of state in the
deconfined phase of Yang-Mills theories in D=2+1 dimensions. We introduce a
holographic model, based on the improved holographic QCD model, from which we
derive a non-trivial relation between the order of the deconfinement phase
transition and the behavior of the trace of the energy-momentum tensor as a
function of the temperature T. We compare the theoretical predictions of this
holographic model with a new set of high-precision numerical results from
lattice simulations of SU(N) theories with N=2, 3, 4, 5 and 6 colors. The
latter reveal that, similarly to the D=3+1 case, the bulk equilibrium
thermodynamic quantities (pressure, trace of the energy-momentum tensor, energy
density and entropy density) exhibit nearly perfect proportionality to the
number of gluons, and can be successfully compared with the holographic
predictions in a broad range of temperatures. Finally, we also show that, again
similarly to the D=3+1 case, the trace of the energy-momentum tensor appears to
be proportional to T^2 in a wide temperature range, starting from approximately
1.2 T_c, where T_c denotes the critical deconfinement temperature.Comment: 2+36 pages, 10 figures; v2: comments added, curves showing the
holographic predictions included in the plots of the pressure and energy and
entropy densities, typos corrected: version published in JHE
Genotyping and antibiotic resistance of thermophilic Campylobacter isolated from chicken and pig meat in Vietnam
Background Campylobacter species are recognized as the most common cause of
foodborne bacterial gastroenteritis in humans. In this study nine
Campylobacter strains isolated from chicken meat and pork in Hanoi, Vietnam,
were characterized using molecular methods and tested for antibiotic
resistance. Results The nine isolates (eight C. jejuni and one C. coli) were
identified by multiplex PCR, and tested for the presence or absence of 29 gene
loci associated with virulence, lipooligosaccharide (LOS) biosynthesis and
further functions. flaA typing, multilocus sequence typing and microarray
assay investigation showed a high degree of genetic diversity among these
isolates. In all isolates motility genes (flaA, flaB, flhA, fliM),
colonization associated genes (cadF, docB), toxin production genes (cdtA,
cdtB, secD, secF), and the LOS biosynthesis gene pglB were detected. Eight
gene loci (fliY, virB11, Cje1278, Cj1434c, Cj1138, Cj1438c, Cj1440c, Cj1136)
could not be detected by PCR. A differing presence of the gene loci ciaB (22.2
%), Cje1280 (77.8 %), docC (66.7 %), and cgtB (55.6 %) was found. iamA, cdtC,
and the type 6 secretion system were present in all C. jejuni isolates but not
in C. coli. flaA typing resulted in five different genotypes within C. jejuni,
MLST classified the isolates into seven sequence types (ST-5155, ST-6736,
ST-2837, ST-4395, ST-5799, ST-4099 and ST-860). The microarray assay analysis
showed a high genetic diversity within Vietnamese Campylobacter isolates which
resulted in eight different types for C. jejuni. Antibiotic susceptibility
profiles showed that all isolates were sensitive to gentamicin and most
isolates (88.8 %) were sensitive to chloramphenicol, erythromycin and
streptomycin. Resistance rates to nalidixic acid, tetracycline and
ciprofloxacin were 88.9, 77.8 and 66.7 %, respectively. Conclusions To the
best of our knowledge, this study is the first report that shows high genetic
diversity and remarkable antibiotic resistance of Campylobacter strains
isolated from meat in Vietnam which can be considered of high public health
significance. These preliminary data show that large scale screenings are
justified to assess the relevance of Campylobacter infections on human health
in Vietnam
Both the Caspase CSP-1 and a Caspase-Independent Pathway Promote Programmed Cell Death in Parallel to the Canonical Pathway for Apoptosis in Caenorhabditis elegans
Caspases are cysteine proteases that can drive apoptosis in metazoans and have critical functions in the elimination of cells during development, the maintenance of tissue homeostasis, and responses to cellular damage. Although a growing body of research suggests that programmed cell death can occur in the absence of caspases, mammalian studies of caspase-independent apoptosis are confounded by the existence of at least seven caspase homologs that can function redundantly to promote cell death. Caspase-independent programmed cell death is also thought to occur in the invertebrate nematode Caenorhabditis elegans. The C. elegans genome contains four caspase genes (ced-3, csp-1, csp-2, and csp-3), of which only ced-3 has been demonstrated to promote apoptosis. Here, we show that CSP-1 is a pro-apoptotic caspase that promotes programmed cell death in a subset of cells fated to die during C. elegans embryogenesis. csp-1 is expressed robustly in late pachytene nuclei of the germline and is required maternally for its role in embryonic programmed cell deaths. Unlike CED-3, CSP-1 is not regulated by the APAF-1 homolog CED-4 or the BCL-2 homolog CED-9, revealing that csp-1 functions independently of the canonical genetic pathway for apoptosis. Previously we demonstrated that embryos lacking all four caspases can eliminate cells through an extrusion mechanism and that these cells are apoptotic. Extruded cells differ from cells that normally undergo programmed cell death not only by being extruded but also by not being engulfed by neighboring cells. In this study, we identify in csp-3; csp-1; csp-2 ced-3 quadruple mutants apoptotic cell corpses that fully resemble wild-type cell corpses: these caspase-deficient cell corpses are morphologically apoptotic, are not extruded, and are internalized by engulfing cells. We conclude that both caspase-dependent and caspase-independent pathways promote apoptotic programmed cell death and the phagocytosis of cell corpses in parallel to the canonical apoptosis pathway involving CED-3 activation.Howard Hughes Medical InstituteDamon Runyon Cancer Research FoundationCharles A. King Trus
Prey detection and prey capture in copepod nauplii
Copepod nauplii are either ambush feeders that feed on motile prey or they produce a feeding current that entrains prey cells. It is unclear how ambush and feeding-current feeding nauplii perceive and capture prey. Attack jumps in ambush feeding nauplii should not be feasible at low Reynolds numbers due to the thick viscous boundary layer surrounding the attacking nauplius. We use high-speed video to describe the detection and capture of phytoplankton prey by the nauplii of two ambush feeding species (Acartia tonsa and Oithona davisae) and by the nauplii of one feeding-current feeding species (Temora longicornis). We demonstrate that the ambush feeders both detect motile prey remotely. Prey detection elicits an attack jump, but the jump is not directly towards the prey, such as has been described for adult copepods. Rather, the nauplius jumps past the prey and sets up an intermittent feeding current that pulls in the prey from behind towards the mouth. The feeding-current feeding nauplius detects prey arriving in the feeding current but only when the prey is intercepted by the setae on the feeding appendages. This elicits an altered motion pattern of the feeding appendages that draws in the prey
Diel surface temperature range scales with lake size
Ecological and biogeochemical processes in lakes are strongly dependent upon water temperature. Long-term surface warming of many lakes is unequivocal, but little is known about the comparative magnitude of temperature variation at diel timescales, due to a lack of appropriately resolved data. Here we quantify the pattern and magnitude of diel temperature variability of surface waters using high-frequency data from 100 lakes. We show that the near-surface diel temperature range can be substantial in summer relative to long-term change and, for lakes smaller than 3 km2, increases sharply and predictably with decreasing lake area. Most small lakes included in this study experience average summer diel ranges in their near-surface temperatures of between 4 and 7°C. Large diel temperature fluctuations in the majority of lakes undoubtedly influence their structure, function and role in biogeochemical cycles, but the full implications remain largely unexplored
- …
