4,834 research outputs found
Charged, conformal non-relativistic hydrodynamics
We embed a holographic model of an U(1) charged fluid with Galilean
invariance in string theory and calculate its specific heat capacity and
Prandtl number. Such theories are generated by a R-symmetry twist along a null
direction of a N=1 superconformal theory. We study the hydrodynamic properties
of such systems employing ideas from the fluid-gravity correspondence.Comment: 31 pages, 1 figure, JHEP3 style, refs added, typos corrected, missing
terms in spatial charge current and field corrections added, to be published
in JHE
The peaked response of transpiration rate to vapour pressure deficit in field conditions can be explained by the temperature optimum of photosynthesis
Leaf transpiration rate (E) frequently shows a peaked response to increasing vapour pressure deficit (D). The mechanisms for the decrease in E at high D, known as the 'apparent feed-forward response', are strongly debated but explanations to date have exclusively focused on hydraulic processes. However, stomata also respond to signals related to photosynthesis. We investigated whether the apparent feed-forward response of E to D in the field can be explained by the response of photosynthesis to temperature (T), which normally co-varies with D in field conditions. As photosynthesis decreases with increasing T past its optimum, it may drive a decrease in stomatal conductance (gs) that is additional to the response of gs to increasing D alone. If this additional decrease is sufficiently steep and coupling between A and gs occurs, it could cause an overall decrease in E with increasing D. We tested this mechanism using a gas exchange model applied to leaf-scale and whole-tree CO2 and H2O fluxes measured on Eucalyptus saligna growing in whole-tree chambers. A peaked response of E to D was observed at both leaf and whole-tree scales. We found that this peaked response was matched by a gas exchange model only when T effects on photosynthesis were incorporated. We conclude that field-based studies of the relationship between E and D need to consider signals related to changing photosynthetic rates in addition to purely hydraulic mechanisms. © 2014 Elsevier B.V
Facile Synthesis of High Quality Graphene Nanoribbons
Graphene nanoribbons have attracted attention for their novel electronic and
spin transport properties1-6, and because nanoribbons less than 10 nm wide have
a band gap that can be used to make field effect transistors. However,
producing nanoribbons of very high quality, or in high volumes, remains a
challenge. Here, we show that pristine few-layer nanoribbons can be produced by
unzipping mildly gas-phase oxidized multiwalled carbon nanotube using
mechanical sonication in an organic solvent. The nanoribbons exhibit very high
quality, with smooth edges (as seen by high-resolution transmission electron
microscopy), low ratios of disorder to graphitic Raman bands, and the highest
electrical conductance and mobility reported to date (up to 5e2/h and 1500
cm2/Vs for ribbons 10-20 nm in width). Further, at low temperature, the
nanoribbons exhibit phase coherent transport and Fabry-Perot interference,
suggesting minimal defects and edge roughness. The yield of nanoribbons was ~2%
of the starting raw nanotube soot material, which was significantly higher than
previous methods capable of producing high quality narrow nanoribbons1. The
relatively high yield synthesis of pristine graphene nanoribbons will make
these materials easily accessible for a wide range of fundamental and practical
applications.Comment: Nature Nanotechnology in pres
Holographic dilepton production in a thermalizing plasma
We determine the out-of-equilibrium production rate of dileptons at rest in
strongly coupled N=4 Super Yang-Mills plasma using the AdS/CFT correspondence.
Thermalization is achieved via the gravitational collapse of a thin shell of
matter in AdS_5 space and the subsequent formation of a black hole, which we
describe in a quasistatic approximation. Prior to thermalization, the dilepton
spectral function is observed to oscillate as a function of frequency, but the
amplitude of the oscillations decreases when thermal equilibrium is approached.
At the same time, we follow the flow of the quasinormal spectrum of the
corresponding U(1) vector field towards its equilibrium limit.Comment: 21 pages, 7 figures. v2: Version accepted for publication in JHEP;
minor modifications, added reference
Sampling-based Algorithms for Optimal Motion Planning
During the last decade, sampling-based path planning algorithms, such as
Probabilistic RoadMaps (PRM) and Rapidly-exploring Random Trees (RRT), have
been shown to work well in practice and possess theoretical guarantees such as
probabilistic completeness. However, little effort has been devoted to the
formal analysis of the quality of the solution returned by such algorithms,
e.g., as a function of the number of samples. The purpose of this paper is to
fill this gap, by rigorously analyzing the asymptotic behavior of the cost of
the solution returned by stochastic sampling-based algorithms as the number of
samples increases. A number of negative results are provided, characterizing
existing algorithms, e.g., showing that, under mild technical conditions, the
cost of the solution returned by broadly used sampling-based algorithms
converges almost surely to a non-optimal value. The main contribution of the
paper is the introduction of new algorithms, namely, PRM* and RRT*, which are
provably asymptotically optimal, i.e., such that the cost of the returned
solution converges almost surely to the optimum. Moreover, it is shown that the
computational complexity of the new algorithms is within a constant factor of
that of their probabilistically complete (but not asymptotically optimal)
counterparts. The analysis in this paper hinges on novel connections between
stochastic sampling-based path planning algorithms and the theory of random
geometric graphs.Comment: 76 pages, 26 figures, to appear in International Journal of Robotics
Researc
Constraints on Fluid Dynamics from Equilibrium Partition Functions
We study the thermal partition function of quantum field theories on
arbitrary stationary background spacetime, and with arbitrary stationary
background gauge fields, in the long wavelength expansion. We demonstrate that
the equations of relativistic hydrodynamics are significantly constrained by
the requirement of consistency with any partition function. In examples at low
orders in the derivative expansion we demonstrate that these constraints
coincide precisely with the equalities between hydrodynamical transport
coefficients that follow from the local form of the second law of
thermodynamics. In particular we recover the results of Son and Surowka on the
chiral magnetic and chiral vorticity flows, starting from a local partition
function that manifestly reproduces the field theory anomaly, without making
any reference to an entropy current. We conjecture that the relations between
transport coefficients that follow from the second law of thermodynamics agree
to all orders in the derivative expansion with the constraints described in
this paper.Comment: Typos corrected, References adde
Extracellular Matrix Aggregates from Differentiating Embryoid Bodies as a Scaffold to Support ESC Proliferation and Differentiation
Embryonic stem cells (ESCs) have emerged as potential cell sources for tissue engineering and regeneration owing to its virtually unlimited replicative capacity and the potential to differentiate into a variety of cell types. Current differentiation strategies primarily involve various growth factor/inducer/repressor concoctions with less emphasis on the substrate. Developing biomaterials to promote stem cell proliferation and differentiation could aid in the realization of this goal. Extracellular matrix (ECM) components are important physiological regulators, and can provide cues to direct ESC expansion and differentiation. ECM undergoes constant remodeling with surrounding cells to accommodate specific developmental event. In this study, using ESC derived aggregates called embryoid bodies (EB) as a model, we characterized the biological nature of ECM in EB after exposure to different treatments: spontaneously differentiated and retinoic acid treated (denoted as SPT and RA, respectively). Next, we extracted this treatment-specific ECM by detergent decellularization methods (Triton X-100, DOC and SDS are compared). The resulting EB ECM scaffolds were seeded with undifferentiated ESCs using a novel cell seeding strategy, and the behavior of ESCs was studied. Our results showed that the optimized protocol efficiently removes cells while retaining crucial ECM and biochemical components. Decellularized ECM from SPT EB gave rise to a more favorable microenvironment for promoting ESC attachment, proliferation, and early differentiation, compared to native EB and decellularized ECM from RA EB. These findings suggest that various treatment conditions allow the formulation of unique ESC-ECM derived scaffolds to enhance ESC bioactivities, including proliferation and differentiation for tissue regeneration applications. © 2013 Goh et al
Long-Range Rapidity Correlations in Heavy Ion Collisions at Strong Coupling from AdS/CFT
We use AdS/CFT correspondence to study two-particle correlations in heavy ion
collisions at strong coupling. Modeling the colliding heavy ions by shock waves
on the gravity side, we observe that at early times after the collision there
are long-range rapidity correlations present in the two-point functions for the
glueball and the energy-momentum tensor operators. We estimate rapidity
correlations at later times by assuming that the evolution of the system is
governed by ideal Bjorken hydrodynamics, and find that glueball correlations in
this state are suppressed at large rapidity intervals, suggesting that
late-time medium dynamics can not "wash out" the long-range rapidity
correlations that were formed at early times. These results may provide an
insight on the nature of the "ridge" correlations observed in heavy ion
collision experiments at RHIC and LHC, and in proton-proton collisions at LHC.Comment: 32 pages, 2 figures; v2: typos corrected, references adde
Constraints on Superfluid Hydrodynamics from Equilibrium Partition Functions
Following up on recent work in the context of ordinary fluids, we study the
equilibrium partition function of a 3+1 dimensional superfluid on an arbitrary
stationary background spacetime, and with arbitrary stationary background gauge
fields, in the long wavelength expansion. We argue that this partition function
is generated by a 3 dimensional Euclidean effective action for the massless
Goldstone field. We parameterize the general form of this action at first order
in the derivative expansion. We demonstrate that the constitutive relations of
relativistic superfluid hydrodynamics are significantly constrained by the
requirement of consistency with such an effective action. At first order in the
derivative expansion we demonstrate that the resultant constraints on
constitutive relations coincide precisely with the equalities between
hydrodynamical transport coefficients recently derived from the second law of
thermodynamics.Comment: 46 page
Patient-centric trials for therapeutic development in precision oncology
An enhanced understanding of the molecular pathology of disease gained from genomic studies is facilitating the development of treatments that target discrete molecular subclasses of tumours. Considerable associated challenges include how to advance and implement targeted drug-development strategies. Precision medicine centres on delivering the most appropriate therapy to a patient on the basis of clinical and molecular features of their disease. The development of therapeutic agents that target molecular mechanisms is driving innovation in clinical-trial strategies. Although progress has been made, modifications to existing core paradigms in oncology drug development will be required to realize fully the promise of precision medicine
- …
