5 research outputs found
Deconstructing the DGAT1 enzyme: membrane interactions at substrate binding sites
Diacylglycerol acyltransferase 1 (DGAT1) is a key enzyme in the triacylglyceride synthesis pathway. Bovine DGAT1 is an endoplasmic reticulum membrane-bound protein associated with the regulation of fat content in milk and meat. The aim of this study was to evaluate the interaction of DGAT1 peptides corresponding to putative substrate binding sites with different types of model membranes. Whilst these peptides are predicted to be located in an extramembranous loop of the membrane-bound protein, their hydrophobic substrates are membrane-bound molecules. In this study, peptides corresponding to the binding sites of the two substrates involved in the reaction were examined in the presence of model membranes in order to probe potential interactions between them that might influence the subsequent binding of the substrates. Whilst the conformation of one of the peptides changed upon binding several types of micelles regardless of their surface charge, suggesting binding to hydrophobic domains, the other peptide bound strongly to negatively-charged model membranes. This binding was accompanied by a change in conformation, and produced leakage of the liposome-entrapped dye calcein. The different hydrophobic and electrostatic interactions observed suggest the peptides may be involved in the interactions of the enzyme with membrane surfaces, facilitating access of the catalytic histidine to the triacylglycerol substrates
A genome scan for milk production traits in dairy goats reveals two new mutations in <i>Dgat1</i> reducing milk fat content
The quantity of milk and milk fat and proteins are particularly important traits in dairy livestock.
However, little is known about the regions of the genome that influence these traits in goats. We
conducted a genome wide association study in French goats and identified 109 regions associated
with dairy traits. For a major region on chromosome 14 closely associated with fat content, the
Diacylglycerol O-Acyltransferase 1 (DGAT1) gene turned out to be a functional and positional candidate
gene. The caprine reference sequence of this gene was completed and 29 polymorphisms were found in
the gene sequence, including two novel exonic mutations: R251L and R396W, leading to substitutions
in the protein sequence. The R251L mutation was found in the Saanen breed at a frequency of 3.5% and
the R396W mutation both in the Saanen and Alpine breeds at a frequencies of 13% and 7% respectively.
The R396W mutation explained 46% of the genetic variance of the trait, and the R251L mutation 6%.
Both mutations were associated with a notable decrease in milk fat content. Their causality was then
demonstrated by a functional test. These results provide new knowledge on the genetic basis of milk
synthesis and will help improve the management of the French dairy goat breeding program
Risk factors for syphilis in young women attending a family health program in Vitória, Brazil
IL-10 and NOS2 Modulate Antigen-Specific Reactivity and Nerve Infiltration by T Cells in Experimental Leprosy
Although immunopathology dictates clinical outcome in leprosy, the dynamics of early and chronic infection are poorly defined. In the tuberculoid region of the spectrum, Mycobacterium leprae growth is restricted yet a severe granulomatous lesion can occur. The evolution and maintenance of chronic inflammatory processes like those observed in the leprosy granuloma involve an ongoing network of communications via cytokines. IL-10 has immunosuppressive properties and IL-10 genetic variants have been associated with leprosy development and reactions.The role of IL-10 in resistance and inflammation in leprosy was investigated using Mycobacterium leprae infection of mice deficient in IL-10 (IL-10-/-), as well as mice deficient in both inducible nitric oxide synthase (NOS2-/-) and IL-10 (10NOS2-/-). Although a lack of IL-10 did not affect M. leprae multiplication in the footpads (FP), inflammation increased from C57Bl/6 (B6)<IL-10-/-<NOS2-/-<10NOS2-/-. While IL-10-/- mice exhibited modest FP induration compared to B6, NOS2-/- and 10NOS2-/- mice developed markedly enlarged FP marking distinct phases: early (1 month), peak (3-4 months), and chronic (8 months). IFN-γ-producing CD4+CD44+ cells responding to M. leprae cell wall, membrane, and cytosol antigens and ML2028 (Ag85B) were significantly increased in the evolved granuloma in NOS2-/- FP compared to B6 and IL-10-/- during early and peak phases. In 10NOS2-/- FP, CD4+CD44+ and especially CD8+CD44+ responses were augmented even further to these antigens as well as to ML0380 (GroES), ML2038 (bacterioferritin), and ML1877 (EF-Tu). Moreover, fragmented nerves containing CD4+ cells were present in 10NOS2-/- FP.The 10NOS2-/- strain offers insight on the regulation of granuloma formation and maintenance by immune modulators in the resistant forms of leprosy and presents a new model for investigating the pathogenesis of neurological involvement
