1,413 research outputs found
Nontrivial temporal scaling in a Galilean stick-slip dynamics
We examine the stick-slip fluctuating response of a rough massive
non-rotating cylinder moving on a rough inclined groove which is submitted to
weak external perturbations and which is maintained well below the angle of
repose. The experiments presented here, which are reminiscent of the Galileo's
works with rolling objects on inclines, have brought in the last years
important new insights into the friction between surfaces in relative motion
and are of relevance for earthquakes, differing from classical block-spring
models by the mechanism of energy input in the system. Robust nontrivial
temporal scaling laws appearing in the dynamics of this system are reported,
and it is shown that the time-support where dissipation occurs approaches a
statistical fractal set with a fixed value of dimension. The distribution of
periods of inactivity in the intermittent motion of the cylinder is also
studied and found to be closely related to the lacunarity of a random version
of the classic triadic Cantor set on the line.Comment: 7 pages including 6 figure
Reanalysis-driven climate simulation over CORDEX North America domain using the Canadian Regional Climate Model, version 5: model performance evaluation
The performance of reanalysis-driven Canadian Regional Climate Model, version 5 (CRCM5) in reproducing the present climate over the North American COordinated Regional climate Downscaling EXperiment domain for the 1989–2008 period has been assessed in comparison with several observation-based datasets. The model reproduces satisfactorily the near-surface temperature and precipitation characteristics over most part of North America. Coastal and mountainous zones remain problematic: a cold bias (2–6 °C) prevails over Rocky Mountains in summertime and all year-round over Mexico; winter precipitation in mountainous coastal regions is overestimated. The precipitation patterns related to the North American Monsoon are well reproduced, except on its northern limit. The spatial and temporal structure of the Great Plains Low-Level Jet is well reproduced by the model; however, the night-time precipitation maximum in the jet area is underestimated. The performance of CRCM5 was assessed against earlier CRCM versions and other RCMs. CRCM5 is shown to have been substantially improved compared to CRCM3 and CRCM4 in terms of seasonal mean statistics, and to be comparable to other modern RCMs
Correlating Pedestrian Flows and Search Engine Queries
An important challenge for ubiquitous computing is the development of
techniques that can characterize a location vis-a-vis the richness and
diversity of urban settings. In this paper we report our work on correlating
urban pedestrian flows with Google search queries. Using longitudinal data we
show pedestrian flows at particular locations can be correlated with the
frequency of Google search terms that are semantically relevant to those
locations. Our approach can identify relevant content, media, and
advertisements for particular locations.Comment: 4 pages, 1 figure, 1 tabl
Carte sédimentologique et carte annexe du lagon de Nouvelle-Calédonie à 1/50 000 : feuille La Tontouta
Mapping Turnaround Times (TAT) to a Generic Timeline: A Systematic Review of TAT Definitions in Clinical Domains
Background: Assessing turnaround times can help to analyse workflows in hospital information systems. This paper presents a systematic review of literature concerning different turnaround time definitions. Our objectives were to collect relevant literature with respect to this kind of process times in hospitals and their respective domains. We then analysed the existing definitions and summarised them in an appropriate format.
Methods: Our search strategy was based on Pubmed queries and manual reviews of the bibliographies of retrieved articles. Studies were included if precise definitions of turnaround times were available. A generic timeline was designed through a consensus process to provide an overview of these definitions.
Results: More than 1000 articles were analysed and resulted in 122 papers. Of those, 162 turnaround time definitions in different clinical domains were identified. Starting and end points vary between these domains. To illustrate those turnaround time definitions, a generic timeline was constructed using preferred terms derived from the identified definitions. The consensus process resulted in the following 15 terms: admission, order, biopsy/examination, receipt of specimen in laboratory, procedure completion, interpretation, dictation, transcription, verification, report available, delivery, physician views report, treatment, discharge and discharge letter sent. Based on this analysis, several standard terms for turnaround time definitions are proposed.
Conclusion: Using turnaround times to benchmark clinical workflows is still difficult, because even within the same clinical domain many different definitions exist. Mapping of turnaround time definitions to a generic timeline is feasible
Tilting mutation of weakly symmetric algebras and stable equivalence
We consider tilting mutations of a weakly symmetric algebra at a subset of
simple modules, as recently introduced by T. Aihara. These mutations are
defined as the endomorphism rings of certain tilting complexes of length 1.
Starting from a weakly symmetric algebra A, presented by a quiver with
relations, we give a detailed description of the quiver and relations of the
algebra obtained by mutating at a single loopless vertex of the quiver of A. In
this form the mutation procedure appears similar to, although significantly
more complicated than, the mutation procedure of Derksen, Weyman and Zelevinsky
for quivers with potentials. By definition, weakly symmetric algebras connected
by a sequence of tilting mutations are derived equivalent, and hence stably
equivalent. The second aim of this article is to study these stable
equivalences via a result of Okuyama describing the images of the simple
modules. As an application we answer a question of Asashiba on the derived
Picard groups of a class of self-injective algebras of finite representation
type. We conclude by introducing a mutation procedure for maximal systems of
orthogonal bricks in a triangulated category, which is motivated by the effect
that a tilting mutation has on the set of simple modules in the stable
category.Comment: Description and proof of mutated algebra made more rigorous (Prop.
3.1 and 4.2). Okuyama's Lemma incorporated: Theorem 4.1 is now Corollary 5.1,
and proof is omitted. To appear in Algebras and Representation Theor
Modelling of the radiative properties of an opaque porous ceramic layer
Solid Oxide Fuel Cells (SOFCs) operate at temperatures above 1,100 K where radiation effects can be significant. Therefore, an accurate thermal model of an SOFC requires the inclusion of the contribution of thermal radiation. This implies that the thermal radiative properties of the oxide ceramics used in the design of SOFCs must be known. However, little information can be found in the literature concerning their operating temperatures. On the other hand, several types of ceramics with different chemical compositions and microstructures for designing efficient cells are now being tested. This is a situation where the use of a numerical tool making possible the prediction of the thermal radiative properties of SOFC materials, whatever their chemical composition and microstructure are, may be a decisive help. Using this method, first attempts to predict the radiative properties of a lanthanum nickelate porous layer deposited onto an yttria stabilized zirconium substrate can be reported
Fermat's principle of least time in the presence of uniformly moving boundaries and media
The refraction of a light ray by a homogeneous, isotropic and non-dispersive
transparent material half-space in uniform rectilinear motion is investigated
theoretically. The approach is an amalgamation of the original Fermat's
principle and the fact that an isotropic optical medium at rest becomes
optically anisotropic in a frame where the medium is moving at a constant
velocity. Two cases of motion are considered: a) the material half-space is
moving parallel to the interface; b) the material half-space is moving
perpendicular to the interface. In each case, a detailed analysis of the
obtained refraction formula is provided, and in the latter case, an intriguing
backward refraction of light is noticed and thoroughly discussed. The results
confirm the validity of Fermat's principle when the optical media and the
boundaries between them are moving at relativistic speeds.Comment: 11 pages, 6 figures, RevTeX 4, comments welcome; V2: revised, Fig. 7
added; V3: several typos corrected, accepted for publication in European
Journal of Physics (online at: http://stacks.iop.org/EJP/28/933
- …
