8,670 research outputs found
The primordial deuterium abundance at z = 2.504 from a high signal-to-noise spectrum of Q1009+2956
The spectrum of the quasar Q1009+2956 has been observed
extensively on the Keck telescope. The Lyman limit absorption system was previously used to measure D/H by Burles & Tytler using a
spectrum with signal to noise approximately 60 per pixel in the continuum near
Ly {\alpha} at . The larger dataset now available combines
to form an exceptionally high signal to noise spectrum, around 147 per pixel.
Several heavy element absorption lines are detected in this LLS, providing
strong constraints on the kinematic structure. We explore a suite of absorption
system models and find that the deuterium feature is likely to be contaminated
by weak interloping Ly {\alpha} absorption from a low column density H I cloud,
reducing the expected D/H precision. We find D/H =
for this system. Combining this new
measurement with others from the literature and applying the method of Least
Trimmed Squares to a statistical sample of 15 D/H measurements results in a
"reliable" sample of 13 values. This sample yields a primordial deuterium
abundance of (D/H). The
corresponding mean baryonic density of the Universe is . The quasar absorption data is of the same precision as, and
marginally inconsistent with, the 2015 CMB Planck (TT+lowP+lensing)
measurement, . Further quasar and more
precise nuclear data are required to establish whether this is a random
fluctuation.Comment: accepted by MNRAS, 18 pages, 12 figures, 6 table
Power Allocation Games in Wireless Networks of Multi-antenna Terminals
We consider wireless networks that can be modeled by multiple access channels
in which all the terminals are equipped with multiple antennas. The propagation
model used to account for the effects of transmit and receive antenna
correlations is the unitary-invariant-unitary model, which is one of the most
general models available in the literature. In this context, we introduce and
analyze two resource allocation games. In both games, the mobile stations
selfishly choose their power allocation policies in order to maximize their
individual uplink transmission rates; in particular they can ignore some
specified centralized policies. In the first game considered, the base station
implements successive interference cancellation (SIC) and each mobile station
chooses his best space-time power allocation scheme; here, a coordination
mechanism is used to indicate to the users the order in which the receiver
applies SIC. In the second framework, the base station is assumed to implement
single-user decoding. For these two games a thorough analysis of the Nash
equilibrium is provided: the existence and uniqueness issues are addressed; the
corresponding power allocation policies are determined by exploiting random
matrix theory; the sum-rate efficiency of the equilibrium is studied
analytically in the low and high signal-to-noise ratio regimes and by
simulations in more typical scenarios. Simulations show that, in particular,
the sum-rate efficiency is high for the type of systems investigated and the
performance loss due to the use of the proposed suboptimum coordination
mechanism is very small
The analysis of solar models: Neutrinos and oscillations
Tests of solar neutrino flux and solar oscillation frequencies were used to assess standard stellar structure theory. Standard and non-standard solar models are enumerated and discussed. The field of solar seismology, wherein the solar interior is studied from the measurement of solar oscillations, is introduced
Systematic Errors in the Estimation of Black Hole Masses by Reverberation Mapping
The mass of the central black hole in many active galactic nuclei has been
estimated on the basis of the assumption that the dynamics of the broad
emission line gas are dominated by the gravity of the black hole. The most
commonly-employed method is to estimate a characteristic size-scale from
reverberation mapping experiments and combine it with a characteristic velocity
taken from the line profiles; the inferred mass is then estimated by . We critically discuss the evidence supporting the assumption of
gravitational dynamics and find that the arguments are still inconclusive. We
then explore the range of possible systematic error if the assumption of
gravitational dynamics is granted. Inclination relative to a flattened system
may cause a systematic underestimate of the central mass by a factor , where is the aspect ratio of the flattening. The coupled
effects of a broad radial emissivity distribution, an unknown angular radiation
pattern of line emission, and sub-optimal sampling in the reverberation
experiment can cause additional systematic errors as large as a factor of 3 or
more in either direction.Comment: 19 pages, 4 figures, AASLaTeX, accepted by Ap
Transition into a low temperature superconducting phase of unconventional pinning in Sr_2RuO_4
We have found a sharp transition in the vortex creep rates at a temperature
T^\ast=0.05 T_c in a single crystal of Sr_2RuO_4 (T_{c}=1.03 K) by means of
magnetic relaxation measurements. For T<T^\ast, the initial creep rates drop to
undetectable low levels. One explanation for this transition into a phase with
such extremely low vortex creep is that the low-temperature phase of Sr_2RuO_4
breaks time reversal symmetry. In that case, degenerate domain walls separating
discreetly degenerate states of a superconductor can act as very strong pinning
centers.Comment: 3 pages, 2 figure
Intracule functional models. II. Analytically integrable kernels
We present, within the framework of intracule functional theory (IFT), a class of kernels whose correlation integrals can be found in closed form. This approach affords three major advantages over other kernels that we have considered previously; ease of implementation, computational efficiency, and numerical stability. We show that even the simplest member of the class yields reasonable estimates of the correlation energies of 18 atomic and 56 molecular systems and we conclude that this kernel class will prove useful in the development of future IFT models
- …
