4,353 research outputs found
Relativistic Expansion of Magnetic Loops at the Self-similar Stage II: Magnetized outflows interacting with the ambient plasma
We obtained self-similar solutions of relativistically expanding magnetic
loops by assuming axisymmetry and a purely radial flow. The stellar rotation
and the magnetic fields in the ambient plasma are neglected. We include the
Newtonian gravity of the central star. These solutions are extended from those
in our previous work (Takahashi, Asano, & Matsumoto 2009) by taking into
account discontinuities such as the contact discontinuity and the shock. The
global plasma flow consists of three regions, the outflowing region, the post
shocked region, and the ambient plasma. They are divided by two
discontinuities. The solutions are characterized by the radial velocity, which
plays a role of the self-similar parameter in our solutions. The shock Lorentz
factor gradually increases with radius. It can be approximately represented by
the power of radius with the power law index of 0.25.
We also carried out magnetohydrodynamic simulations of the evolution of
magnetic loops to study the stability and the generality of our analytical
solutions. We used the analytical solutions as the initial condition and the
inner boundary conditions. We confirmed that our solutions are stable over the
simulation time and that numerical results nicely recover the analytical
solutions. We then carried out numerical simulations to study the generality of
our solutions by changing the power law index \delta of the ambient plasma
density \rho_0 \propto r^{-\delta}. We alter the power law index \delta from
3.5 in the analytical solutions. The analytical solutions are used as the
initial conditions inside the shock in all simulations. We observed that the
shock Lorentz factor increases with time when \delta is larger than 3, while it
decreases with time when \delta is smaller than 3. The shock Lorentz factor is
proportional to t^{(\delta-3)/2}. These results are consistent with the
analytical studies by Shapiro (1979).Comment: 19 pages, 13 figures, Accepted for publication in MNRA
The interaction between policy and education using stroke as an example
This paper discusses the interaction between healthcare policy at the European, UK and Scottish levels and the funding of education that underpins specific health policy priorities. Stroke is used throughout to illustrate the relationship between a designated European and UK health priority and the translation of that priority into clinical delivery. The necessity to build a responsive and sustainable culture to address the healthcare education that underpins changing healthcare policies is emphasized
Nuclei in Strongly Magnetised Neutron Star Crusts
We discuss the ground state properties of matter in outer and inner crusts of
neutron stars under the influence of strong magnetic fields. In particular, we
demonstrate the effects of Landau quantization of electrons on compositions of
neutron star crusts. First we revisit the sequence of nuclei and the equation
of state of the outer crust adopting the Baym, Pethick and Sutherland (BPS)
model in the presence of strong magnetic fields and most recent versions of the
theoretical and experimental nuclear mass tables. Next we deal with nuclei in
the inner crust. Nuclei which are arranged in a lattice, are immersed in a
nucleonic gas as well as a uniform background of electrons in the inner crust.
The Wigner-Seitz approximation is adopted in this calculation and each lattice
volume is replaced by a spherical cell. The coexistence of two phases of
nuclear matter - liquid and gas, is considered in this case. We obtain the
equilibrium nucleus corresponding to each baryon density by minimizing the free
energy of the cell. We perform this calculation using Skyrme nucleon-nucleon
interaction with different parameter sets. We find nuclei with larger mass and
charge numbers in the inner crust in the presence of strong magnetic fields
than those of the zero field case for all nucleon-nucleon interactions
considered here. However, SLy4 interaction has dramatic effects on the proton
fraction as well as masses and charges of nuclei. This may be attributed to the
behaviour of symmetry energy with density in the sub-saturation density regime.
Further we discuss the implications of our results to shear mode oscillations
of magnetars.Comment: presented in "Exciting Physics Symposium" held in Makutsi, South
Africa in November, 2011 and to be published in a book by Springer Verla
Quantum phase transitions from topology in momentum space
Many quantum condensed matter systems are strongly correlated and strongly
interacting fermionic systems, which cannot be treated perturbatively. However,
physics which emerges in the low-energy corner does not depend on the
complicated details of the system and is relatively simple. It is determined by
the nodes in the fermionic spectrum, which are protected by topology in
momentum space (in some cases, in combination with the vacuum symmetry). Close
to the nodes the behavior of the system becomes universal; and the universality
classes are determined by the toplogical invariants in momentum space. When one
changes the parameters of the system, the transitions are expected to occur
between the vacua with the same symmetry but which belong to different
universality classes. Different types of quantum phase transitions governed by
topology in momentum space are discussed in this Chapter. They involve Fermi
surfaces, Fermi points, Fermi lines, and also the topological transitions
between the fully gapped states. The consideration based on the momentum space
topology of the Green's function is general and is applicable to the vacua of
relativistic quantum fields. This is illustrated by the possible quantum phase
transition governed by topology of nodes in the spectrum of elementary
particles of Standard Model.Comment: 45 pages, 17 figures, 83 references, Chapter for the book "Quantum
Simulations via Analogues: From Phase Transitions to Black Holes", to appear
in Springer lecture notes in physics (LNP
Light Neutralinos in B-Decays
We consider the decays of a -meson into a pair of lightest
supersymmetric particles (LSP) in the minimal supersymmetric standard model. It
is found that the parameter space for light LSP's in the range of 1 GeV can be
appreciably constrained by looking for such decays.Comment: 9 pages, LaTex, 2 figures (hard copies of the figures available from
the Authors on request
Water dispersible microbicidal cellulose acetate phthalate film
BACKGROUND: Cellulose acetate phthalate (CAP) has been used for several decades in the pharmaceutical industry for enteric film coating of oral tablets and capsules. Micronized CAP, available commercially as "Aquateric" and containing additional ingredients required for micronization, used for tablet coating from water dispersions, was shown to adsorb and inactivate the human immunodeficiency virus (HIV-1), herpesviruses (HSV) and other sexually transmitted disease (STD) pathogens. Earlier studies indicate that a gel formulation of micronized CAP has a potential as a topical microbicide for prevention of STDs including the acquired immunodeficiency syndrome (AIDS). The objective of endeavors described here was to develop a water dispersible CAP film amenable to inexpensive industrial mass production. METHODS: CAP and hydroxypropyl cellulose (HPC) were dissolved in different organic solvent mixtures, poured into dishes, and the solvents evaporated. Graded quantities of a resulting selected film were mixed for 5 min at 37°C with HIV-1, HSV and other STD pathogens, respectively. Residual infectivity of the treated viruses and bacteria was determined. RESULTS: The prerequisites for producing CAP films which are soft, flexible and dispersible in water, resulting in smooth gels, are combining CAP with HPC (other cellulose derivatives are unsuitable), and casting from organic solvent mixtures containing ≈50 to ≈65% ethanol (EtOH). The films are ≈100 µ thick and have a textured surface with alternating protrusions and depressions revealed by scanning electron microscopy. The films, before complete conversion into a gel, rapidly inactivated HIV-1 and HSV and reduced the infectivity of non-viral STD pathogens >1,000-fold. CONCLUSIONS: Soft pliable CAP-HPC composite films can be generated by casting from organic solvent mixtures containing EtOH. The films rapidly reduce the infectivity of several STD pathogens, including HIV-1. They are converted into gels and thus do not have to be removed following application and use. In addition to their potential as topical microbicides, the films have promise for mucosal delivery of pharmaceuticals other than CAP
Comprehensive identification of essential Staphylococcus aureus genes using Transposon-Mediated Differential Hybridisation (TMDH).
BACKGROUND: In recent years there has been an increasing problem with Staphylococcus aureus strains that are resistant to treatment with existing antibiotics. An important starting point for the development of new antimicrobial drugs is the identification of "essential" genes that are important for bacterial survival and growth. RESULTS: We have developed a robust microarray and PCR-based method, Transposon-Mediated Differential Hybridisation (TMDH), that uses novel bioinformatics to identify transposon inserts in genome-wide libraries. Following a microarray-based screen, genes lacking transposon inserts are re-tested using a PCR and sequencing-based approach. We carried out a TMDH analysis of the S. aureus genome using a large random mariner transposon library of around a million mutants, and identified a total of 351 S. aureus genes important for survival and growth in culture. A comparison with the essential gene list experimentally derived for Bacillus subtilis highlighted interesting differences in both pathways and individual genes. CONCLUSION: We have determined the first comprehensive list of S. aureus essential genes. This should act as a useful starting point for the identification of potential targets for novel antimicrobial compounds. The TMDH methodology we have developed is generic and could be applied to identify essential genes in other bacterial pathogens.RIGHTS : This article is licensed under the BioMed Central licence at http://www.biomedcentral.com/about/license which is similar to the 'Creative Commons Attribution Licence'. In brief you may : copy, distribute, and display the work; make derivative works; or make commercial use of the work - under the following conditions: the original author must be given credit; for any reuse or distribution, it must be made clear to others what the license terms of this work are
Ground-State Magnetization for Interacting Fermions in a Disordered Potential : Kinetic Energy, Exchange Interaction and Off-Diagonal Fluctuations
We study a model of interacting fermions in a disordered potential, which is
assumed to generate uniformly fluctuating interaction matrix elements. We show
that the ground state magnetization is systematically decreased by off-diagonal
fluctuations of the interaction matrix elements. This effect is neglected in
the Stoner picture of itinerant ferromagnetism in which the ground-state
magnetization is simply determined by the balance between ferromagnetic
exchange and kinetic energy, and increasing the interaction strength always
favors ferromagnetism. The physical origin of the demagnetizing effect of
interaction fluctuations is the larger number of final states available for
interaction-induced scattering in the lower spin sectors of the Hilbert space.
We analyze the energetic role played by these fluctuations in the limits of
small and large interaction . In the small limit we do second-order
perturbation theory and identify explicitly transitions which are allowed for
minimal spin and forbidden for higher spin. These transitions then on average
lower the energy of the minimal spin ground state with respect to higher spin.
For large interactions we amplify on our earlier work [Ph. Jacquod and A.D.
Stone, Phys. Rev. Lett. 84, 3938 (2000)] which showed that minimal spin is
favored due to a larger broadening of the many-body density of states in the
low-spin sectors. Numerical results are presented in both limits.Comment: 35 pages, 24 figures - final, shortened version, to appear in
Physical Review
- …
