1,362 research outputs found

    Collapse of superconductivity in a hybrid tin-graphene Josephson junction array

    Full text link
    When a Josephson junction array is built with hybrid superconductor/metal/superconductor junctions, a quantum phase transition from a superconducting to a two-dimensional (2D) metallic ground state is predicted to happen upon increasing the junction normal state resistance. Owing to its surface-exposed 2D electron gas and its gate-tunable charge carrier density, graphene coupled to superconductors is the ideal platform to study the above-mentioned transition between ground states. Here we show that decorating graphene with a sparse and regular array of superconducting nanodisks enables to continuously gate-tune the quantum superconductor-to-metal transition of the Josephson junction array into a zero-temperature metallic state. The suppression of proximity-induced superconductivity is a direct consequence of the emergence of quantum fluctuations of the superconducting phase of the disks. Under perpendicular magnetic field, the competition between quantum fluctuations and disorder is responsible for the resilience at the lowest temperatures of a superconducting glassy state that persists above the upper critical field. Our results provide the entire phase diagram of the disorder and magnetic field-tuned transition and unveil the fundamental impact of quantum phase fluctuations in 2D superconducting systems.Comment: 25 pages, 6 figure

    Time separation as a hidden variable to the Copenhagen school of quantum mechanics

    Full text link
    The Bohr radius is a space-like separation between the proton and electron in the hydrogen atom. According to the Copenhagen school of quantum mechanics, the proton is sitting in the absolute Lorentz frame. If this hydrogen atom is observed from a different Lorentz frame, there is a time-like separation linearly mixed with the Bohr radius. Indeed, the time-separation is one of the essential variables in high-energy hadronic physics where the hadron is a bound state of the quarks, while thoroughly hidden in the present form of quantum mechanics. It will be concluded that this variable is hidden in Feynman's rest of the universe. It is noted first that Feynman's Lorentz-invariant differential equation for the bound-state quarks has a set of solutions which describe all essential features of hadronic physics. These solutions explicitly depend on the time separation between the quarks. This set also forms the mathematical basis for two-mode squeezed states in quantum optics, where both photons are observable, but one of them can be treated a variable hidden in the rest of the universe. The physics of this two-mode state can then be translated into the time-separation variable in the quark model. As in the case of the un-observed photon, the hidden time-separation variable manifests itself as an increase in entropy and uncertainty.Comment: LaTex 10 pages with 5 figure. Invited paper presented at the Conference on Advances in Quantum Theory (Vaxjo, Sweden, June 2010), to be published in one of the AIP Conference Proceedings serie

    HUWE1 E3 ligase promotes PINK1/PARKINindependent mitophagy by regulating AMBRA1 activation via IKKa

    Get PDF
    The selective removal of undesired or damaged mitochondria by autophagy, known as mitophagy, is crucial for cellular homoeostasis, and prevents tumour diffusion, neurodegeneration and ageing. The pro-autophagic molecule AMBRA1 (autophagy/beclin-1 regulator-1) has been defined as a novel regulator of mitophagy in both PINK1/PARKIN-dependent and -independent systems. Here, we identified the E3 ubiquitin ligase HUWE1 as a key inducing factor in AMBRA1-mediated mitophagy, a process that takes place independently of the main mitophagy receptors. Furthermore, we show that mitophagy function of AMBRA1 is post-translationally controlled, upon HUWE1 activity, by a positive phosphorylation on its serine 1014. This modification is mediated by the IKKα kinase and induces structural changes in AMBRA1, thus promoting its interaction with LC3/GABARAP (mATG8) proteins and its mitophagic activity. Altogether, these results demonstrate that AMBRA1 regulates mitophagy through a novel pathway, in which HUWE1 and IKKα are key factors, shedding new lights on the regulation of mitochondrial quality control and homoeostasis in mammalian cells

    Impact Factor: outdated artefact or stepping-stone to journal certification?

    Full text link
    A review of Garfield's journal impact factor and its specific implementation as the Thomson Reuters Impact Factor reveals several weaknesses in this commonly-used indicator of journal standing. Key limitations include the mismatch between citing and cited documents, the deceptive display of three decimals that belies the real precision, and the absence of confidence intervals. These are minor issues that are easily amended and should be corrected, but more substantive improvements are needed. There are indications that the scientific community seeks and needs better certification of journal procedures to improve the quality of published science. Comprehensive certification of editorial and review procedures could help ensure adequate procedures to detect duplicate and fraudulent submissions.Comment: 25 pages, 12 figures, 6 table

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Factors affecting glomerular filtration rate, as measured by iohexol disappearance, in men with or at risk for HIV infection

    Get PDF
    Objective: Formulae used to estimate glomerular filtration rate (GFR) underestimate higher GFRs and have not been well-studied in HIV-infected (HIV(+)) people; we evaluated the relationships of HIV infection and known or potential risk factors for kidney disease with directly measured GFR and the presence of chronic kidney disease (CKD). Design: Cross-sectional measurement of iohexol-based GFR (iGFR) in HIV(+) men (n = 455) receiving antiretroviral therapy, and HIV-uninfected (HIV(-)) men (n = 258) in the Multicenter AIDS Cohort Study. Methods: iGFR was calculated from disappearance of infused iohexol from plasma. Determinants of GFR and the presence of CKD were compared using iGFR and GFR estimated by the CKD-Epi equation (eGFR). Results: Median iGFR was higher among HIV(+) than HIV(-) men (109 vs. 106 ml/min/1.73 m2, respectively, p = .046), and was 7 ml/min higher than median eGFR. Mean iGFR was lower in men who were older, had chronic hepatitis C virus (HCV) infection, or had a history of AIDS. Low iGFR (≤90 ml/min/1.73 m2) was associated with these factors and with black race. Other than age, factors associated with low iGFR were not observed with low eGFR. CKD was more common in HIV(+) than HIV(-) men; predictors of CKD were similar using iGFR and eGFR. Conclusions: iGFR was higher than eGFR in this population of HIV-infected and -uninfected men who have sex with men. Presence of CKD was predicted equally well by iGFR and eGFR, but associations of chronic HCV infection and history of clinically-defined AIDS with mildly decreased GFR were seen only with iGFR. © 2014 Margolick et al

    MicroRNA expression as risk biomarker of breast cancer metastasis : a pilot retrospective case-cohort study

    Get PDF
    Background: MicroRNAs (miRNAs) are small, non-coding RNA molecules involved in post-transcriptional gene regulation and have recently been shown to play a role in cancer metastasis. In solid tumors, especially breast cancer, alterations in miRNA expression contribute to cancer pathogenesis, including metastasis. Considering the emerging role of miRNAs in metastasis, the identification of predictive markers is necessary to further the understanding of stage-specific breast cancer development. This is a retrospective analysis that aimed to identify molecular biomarkers related to distant breast cancer metastasis development. Methods: A retrospective case cohort study was performed in 64 breast cancer patients treated during the period from 1998-2001. The case group (n = 29) consisted of patients with a poor prognosis who presented with breast cancer recurrence or metastasis during follow up. The control group (n = 35) consisted of patients with a good prognosis who did not develop breast cancer recurrence or metastasis. These patient groups were stratified according to TNM clinical stage (CS) I, II and III, and the main clinical features of the patients were homogeneous. MicroRNA profiling was performed and biomarkers related to metastatic were identified independent of clinical stage. Finally, a hazard risk analysis of these biomarkers was performed to evaluate their relation to metastatic potential. Results: MiRNA expression profiling identified several miRNAs that were both specific and shared across all clinical stages (p <= 0.05). Among these, we identified miRNAs previously associated with cell motility (let-7 family) and distant metastasis (hsa-miR-21). In addition, hsa-miR-494 and hsa-miR-21 were deregulated in metastatic cases of CSI and CSII. Furthermore, metastatic miRNAs shared across all clinical stages did not present high sensitivity and specificity when compared to specific-CS miRNAs. Between them, hsa-miR-183 was the most significative of CSII, which miRNAs combination for CSII (hsa-miR-494, hsa-miR-183 and hsa-miR-21) was significant and were a more effective risk marker compared to the single miRNAs. Conclusions: Women with metastatic breast cancer, especially CSII, presented up-regulated levels of miR-183, miR-494 and miR-21, which were associated with a poor prognosis. These miRNAs therefore represent new risk biomarkers of breast cancer metastasis and may be useful for future targeted therapies.We thank the Researcher Support Center of Barretos Cancer Hospital, especially the statistician Zanardo C. for assisting in the statistical analysis.This study received financial support from Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (Fapesp, Proc: 10/ 16796-0, Sao Paulo, Brazil)
    corecore