505 research outputs found
Whole-genome sequencing for prediction of Mycobacterium tuberculosis drug susceptibility and resistance: a retrospective cohort study
Background Diagnosing drug-resistance remains an obstacle to the elimination of tuberculosis. Phenotypic drug-susceptibility testing is slow and expensive, and commercial genotypic assays screen only common resistance-determining mutations. We used whole-genome sequencing to characterise common and rare mutations predicting drug resistance, or consistency with susceptibility, for all first-line and second-line drugs for tuberculosis. Methods Between Sept 1, 2010, and Dec 1, 2013, we sequenced a training set of 2099 Mycobacterium tuberculosis genomes. For 23 candidate genes identified from the drug-resistance scientific literature, we algorithmically characterised genetic mutations as not conferring resistance (benign), resistance determinants, or uncharacterised. We then assessed the ability of these characterisations to predict phenotypic drug-susceptibility testing for an independent validation set of 1552 genomes. We sought mutations under similar selection pressure to those characterised as resistance determinants outside candidate genes to account for residual phenotypic resistance. Findings We characterised 120 training-set mutations as resistance determining, and 772 as benign. With these mutations, we could predict 89·2% of the validation-set phenotypes with a mean 92·3% sensitivity (95% CI 90·7–93·7) and 98·4% specificity (98·1–98·7). 10·8% of validation-set phenotypes could not be predicted because uncharacterised mutations were present. With an in-silico comparison, characterised resistance determinants had higher sensitivity than the mutations from three line-probe assays (85·1% vs 81·6%). No additional resistance determinants were identified among mutations under selection pressure in non-candidate genes. Interpretation A broad catalogue of genetic mutations enable data from whole-genome sequencing to be used clinically to predict drug resistance, drug susceptibility, or to identify drug phenotypes that cannot yet be genetically predicted. This approach could be integrated into routine diagnostic workflows, phasing out phenotypic drug-susceptibility testing while reporting drug resistance early
An ACACB Variant Implicated in Diabetic Nephropathy Associates with Body Mass Index and Gene Expression in Obese Subjects
published_or_final_versio
Public awareness of the link between alcohol and cancer in England in 2015: A population-based survey
Background: Public knowledge of the association between alcohol and cancer is reported to be low. We
aimed to provide up-to-date evidence for England regarding awareness of the link between alcohol and
different cancers and to determine whether awareness differs by demographic characteristics, alcohol use,
and geographic region.
Methods: A representative sample of 2100 adults completed an online survey in July 2015. Respondents were
asked to identify which health outcomes, including specific cancers, may be caused by alcohol consumption.
Logistic regressions explored whether demographic, alcohol use, and geographic characteristics predicted
correctly identifying alcohol-related cancer risk.
Results: Unprompted, 12.9% of respondents identified cancer as a potential health outcome of alcohol
consumption. This rose to 47% when prompted (compared to 95% for liver disease and 73% for heart
disease). Knowledge of the link between alcohol and specific cancers varied between 18% (breast) and 80%
(liver). Respondents identified the following cancers as alcohol-related where no such evidence exists: bladder
(54%), brain (32%), ovarian (17%). Significant predictors of awareness of the link between alcohol and cancer
were being female, more highly educated, and living in North-East England.
Conclusion: There is generally low awareness of the relationship between alcohol consumption and cancer,
particularly breast cancer. Greater awareness of the relationship between alcohol and breast cancer in NorthEast
England, where a mass media campaign highlighted this relationship, suggests that population awareness
can be influenced by social marketing
A pilot study of rapid benchtop sequencing of Staphylococcus aureus and Clostridium difficile for outbreak detection and surveillance
OBJECTIVES: To investigate the prospects of newly available benchtop sequencers to provide rapid whole-genome data in routine clinical practice. Next-generation sequencing has the potential to resolve uncertainties surrounding the route and timing of person-to-person transmission of healthcare-associated infection, which has been a major impediment to optimal management. DESIGN: The authors used Illumina MiSeq benchtop sequencing to undertake case studies investigating potential outbreaks of methicillin-resistant Staphylococcus aureus (MRSA) and Clostridium difficile. SETTING: Isolates were obtained from potential outbreaks associated with three UK hospitals. PARTICIPANTS: Isolates were sequenced from a cluster of eight MRSA carriers and an associated bacteraemia case in an intensive care unit, another MRSA cluster of six cases and two clusters of C difficile. Additionally, all C difficile isolates from cases over 6 weeks in a single hospital were rapidly sequenced and compared with local strain sequences obtained in the preceding 3 years. MAIN OUTCOME MEASURE: Whole-genome genetic relatedness of the isolates within each epidemiological cluster. RESULTS: Twenty-six MRSA and 15 C difficile isolates were successfully sequenced and analysed within 5 days of culture. Both MRSA clusters were identified as outbreaks, with most sequences in each cluster indistinguishable and all within three single nucleotide variants (SNVs). Epidemiologically unrelated isolates of the same spa-type were genetically distinct (≥21 SNVs). In both C difficile clusters, closely epidemiologically linked cases (in one case sharing the same strain type) were shown to be genetically distinct (≥144 SNVs). A reconstruction applying rapid sequencing in C difficile surveillance provided early outbreak detection and identified previously undetected probable community transmission. CONCLUSIONS: This benchtop sequencing technology is widely generalisable to human bacterial pathogens. The findings provide several good examples of how rapid and precise sequencing could transform identification of transmission of healthcare-associated infection and therefore improve hospital infection control and patient outcomes in routine clinical practice
Enriching rare variants using family-specific linkage information
Genome-wide association studies have been successful in identifying common variants for common complex traits in recent years. However, common variants have generally failed to explain substantial proportions of the trait heritabilities. Rare variants, structural variations, and gene-gene and gene-environment interactions, among others, have been suggested as potential sources of the so-called missing heritability. With the advent of exome-wide and whole-genome next-generation sequencing technologies, finding rare variants in functionally important sites (e.g., protein-coding regions) becomes feasible. We investigate the role of linkage information to select families enriched for rare variants using the simulated Genetic Analysis Workshop 17 data. In each replicate of simulated phenotypes Q1 and Q2 on 697 subjects in 8 extended pedigrees, we select one pedigree with the largest family-specific LOD score. Across all 200 replications, we compare the probability that rare causal alleles will be carried in the selected pedigree versus a randomly chosen pedigree. One example of successful enrichment was exhibited for gene VEGFC. The causal variant had minor allele frequency of 0.0717% in the simulated unrelated individuals and explained about 0.1% of the phenotypic variance. However, it explained 7.9% of the phenotypic variance in the eight simulated pedigrees and 23.8% in the family that carried the minor allele. The carrier’s family was selected in all 200 replications. Thus our results show that family-specific linkage information is useful for selecting families for sequencing, thus ensuring that rare functional variants are segregating in the sequencing samples
Emerging roles of ATF2 and the dynamic AP1 network in cancer
Cooperation among transcription factors is central for their ability to execute specific transcriptional programmes. The AP1 complex exemplifies a network of transcription factors that function in unison under normal circumstances and during the course of tumour development and progression. This Perspective summarizes our current understanding of the changes in members of the AP1 complex and the role of ATF2 as part of this complex in tumorigenesis.Fil: Lopez Bergami, Pablo Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina; ArgentinaFil: Lau, Eric . Burnham Institute for Medical Research; Estados UnidosFil: Ronai, Zeev . Burnham Institute for Medical Research; Estados Unido
Genetic analysis of the GLUT10 glucose transporter (SLC2A10) polymorphisms in Caucasian American type 2 diabetes
BACKGROUND: GLUT10 (gene symbol SLC2A10) is a facilitative glucose transporter within the type 2 diabetes (T2DM)-linked region on chromosome 20q12-13.1. Therefore, we evaluated GLUT10 as a positional candidate gene for T2DM in Caucasian Americans. METHODS: Twenty SNPs including 4 coding, 10 intronic and 6 5' and 3' to the coding sequence were genotyped across a 100 kb region containing the SLC2A10 gene in DNAs from 300 T2DM cases and 310 controls using the Sequenom MassArray Genotyping System. Allelic association was evaluated, and linkage disequilibrium (LD) and haplotype structure of SLC2A10 were also determined to assess whether any specific haplotypes were associated with T2DM. RESULTS: Of these variants, fifteen had heterozygosities greater than 0.80 and were analyzed further for association with T2DM. No evidence of significant association was observed for any variant with T2DM (all P ≥ 0.05), including Ala206Thr (rs2235491) which was previously reported to be associated with fasting insulin. Linkage disequilibrium analysis suggests that the SLC2A10 gene is contained in a single haplotype block of 14 kb. Haplotype association analysis with T2DM did not reveal any significant differences between haplotype frequencies in T2DM cases and controls. CONCLUSION: From our findings, we can conclude that sequence variants in or near GLUT10 are unlikely to contribute significantly to T2DM in Caucasian Americans
Detailed Sub-study Analysis of the SECRAB Trial: Quality of Life, Cosmesis and Chemotherapy Dose Intensity.
AIMS: SECRAB was a prospective, open-label, multicentre, randomised phase III trial comparing synchronous to sequential chemoradiotherapy (CRT). Conducted in 48 UK centres, it recruited 2297 patients (1150 synchronous and 1146 sequential) between 2 July 1998 and 25 March 2004. SECRAB reported a positive therapeutic benefit of using adjuvant synchronous CRT in the management of breast cancer; 10-year local recurrence rates reduced from 7.1% to 4.6% (P = 0.012). The greatest benefit was seen in patients treated with anthracycline-cyclophosphamide, methotrexate, 5-fluorouracil (CMF) rather than CMF. The aim of its sub-studies reported here was to assess whether quality of life (QoL), cosmesis or chemotherapy dose intensity differed between the two CRT regimens. MATERIALS AND METHODS: The QoL sub-study used EORTC QLQ-C30, EORTC QLQ-BR23 and the Women's Health Questionnaire. Cosmesis was assessed: (i) by the treating clinician, (ii) by a validated independent consensus scoring method and (iii) from the patients' perspective by analysing four cosmesis-related QoL questions within the QLQ-BR23. Chemotherapy doses were captured from pharmacy records. The sub-studies were not formally powered; rather, the aim was that at least 300 patients (150 in each arm) were recruited and differences in QoL, cosmesis and dose intensity of chemotherapy assessed. The analysis, therefore, is exploratory in nature. RESULTS: No differences were observed in the change from baseline in QoL between the two arms assessed up to 2 years post-surgery (Global Health Status: -0.05; 95% confidence interval -2.16, 2.06; P = 0.963). No differences in cosmesis were observed (via independent and patient assessment) up to 5 years post-surgery. The percentage of patients receiving the optimal course-delivered dose intensity (≥85%) was not significantly different between the arms (synchronous 88% versus sequential 90%; P = 0.503). CONCLUSIONS: Synchronous CRT is tolerable, deliverable and significantly more effective than sequential, with no serious disadvantages identified when assessing 2-year QoL or 5-year cosmetic differences
Prediction of mortality using a multi-bed vascular calcification score in the Diabetes Heart Study
Background Vascular calcified plaque, a measure of subclinical cardiovascular disease (CVD), is unlikely to be limited to a single vascular bed in patients with multiple risk factors. Consideration of vascular calcified plaque as a global phenomenon may allow for a more accurate assessment of the CVD burden. The aim of this study was to examine the utility of a combined vascular calcified plaque score in the prediction of mortality. Methods Vascular calcified plaque scores from the coronary, carotid, and abdominal aortic vascular beds and a derived multi-bed score were examined for associations with all-cause and CVD-mortality in 699 European-American type 2 diabetes (T2D) affected individuals from the Diabetes Heart Study. The ability of calcified plaque to improve prediction beyond Framingham risk factors was assessed. Results Over 8.4? .3 years (mean? tandard deviation) of follow-up, 156 (22.3%) participants were deceased, 74 (10.6%) from CVD causes. All calcified plaque scores were significantly associated with all-cause (HR: 1.4-1.8; p?<?1x10-5) and CVD-mortality (HR: 1.5-1.9; p?<?1ױ0-4) following adjustment for Framingham risk factors. Associations were strongest for coronary calcified plaque. Improvement in prediction of outcome beyond Framingham risk factors was greatest using coronary calcified plaque for all-cause mortality (AUC: 0.720 to 0.757, p?=?0.004) and the multi-bed score for CVD mortality (AUC: 0.731 to 0.767, p?=?0.008). Conclusions Although coronary calcified plaque and the multi-bed score were the strongest predictors of all-cause mortality and CVD-mortality respectively in this T2D-affected sample, carotid and abdominal aortic calcified plaque scores also significantly improved prediction of outcome beyond traditional risk factors and should not be discounted as risk stratification tools.Griffith Health, School of Medical ScienceFull Tex
Viability Conditions for a Compartmentalized Protometabolic System: A Semi-Empirical Approach
In this work we attempt to find out the extent to which realistic prebiotic compartments, such as fatty acid vesicles, would constrain the chemical network dynamics that could have sustained a minimal form of metabolism. We combine experimental and simulation results to establish the conditions under which a reaction network with a catalytically closed organization (more specifically, an ()-system) would overcome the potential problem of self-suffocation that arises from the limited accessibility of nutrients to its internal reaction domain. The relationship between the permeability of the membrane, the lifetime of the key catalysts and their efficiency (reaction rate enhancement) turns out to be critical. In particular, we show how permeability values constrain the characteristic time scale of the bounded protometabolic processes. From this concrete and illustrative example we finally extend the discussion to a wider evolutionary context
- …
