626 research outputs found
Transport of apolipoproteins A-I and A-II by human thoracic duct lymph
The daily transport of human plasma apolipoproteins A-I and A-II, triglyceride, and total cholesterol from the thoracic duct lymph into plasma was measured in 2 subjects before and 3 subjects after renal transplantation. Lymph triglyceride transport was ~83% of the daily ingested fat loads, whereas lymph cholesterol transport was consistently greater than the amount of daily ingested cholesterol. Lymph apolipoprotein transport significantly (P < 0.05) exceeded the predicted apolipoprotein synthesis rate by an average of 659±578 mg/d for apolipoprotein A-I and 109±59 mg/d for apolipoprotein A-II among the 5 subjects. It is estimated that 22-77% (apolipoprotein A-I) and 28-82% (apolipoprotein A-II) of daily total body apolipoprotein synthesis takes place in the intestine. Lymph high density lipoprotein particles are mostly high density lipoprotein(2b) and high density lipoprotein(2a) and have a greater overall relative triglyceride content and a smaller relative cholesteryl ester content when compared with homologous plasma high density lipoproteins. The major quantity of both lymph apolipoprotein A-I (81±8%) and apolipoprotein A-II (90±11%) was found within high density lipoproteins with almost all of the remainder found in chylomicrons and very low density lipoproteins. The combined results are consistent with a major contribution of the intestine to total body synthesis of apolipoprotein A-I and apolipoprotein A-II. An important role of lymph in returning filtered apolipoprotein to plasma in association with high density lipoproteins is proposed. Accompanying the return of filtered apolipoprotein to the plasma is a probable transformation, both in size and composition, of at least some of the lymph high density lipoprotein(2b) and high density lipoprotein(2a) particles into high density lipoprotein3
Search for the Decays B^0 -> D^{(*)+} D^{(*)-}
Using the CLEO-II data set we have searched for the Cabibbo-suppressed decays
B^0 -> D^{(*)+} D^{(*)-}. For the decay B^0 -> D^{*+} D^{*-}, we observe one
candidate signal event, with an expected background of 0.022 +/- 0.011 events.
This yield corresponds to a branching fraction of Br(B^0 -> D^{*+} D^{*-}) =
(5.3^{+7.1}_{-3.7}(stat) +/- 1.0(syst)) x 10^{-4} and an upper limit of Br(B^0
-> D^{*+} D^{*-}) D^{*\pm} D^\mp and
B^0 -> D^+ D^-, no significant excess of signal above the expected background
level is seen, and we calculate the 90% CL upper limits on the branching
fractions to be Br(B^0 -> D^{*\pm} D^\mp) D^+
D^-) < 1.2 x 10^{-3}.Comment: 12 page postscript file also available through
http://w4.lns.cornell.edu/public/CLNS, submitted to Physical Review Letter
Identification of two novel powdery mildew resistance loci, Ren6 and Ren7, from the wild Chinese grape species Vitis piasezkii
Descriptive statistics of the phenotypic scores within the base mapping population 11-373. Powdery mildew symptoms in the field were evaluated in two subsequent years. Greenhouse, in vitro experiments and the qPCR-based molecular assay were carried out with three to four biological replicates of each seedling plant in 2014. (DOCX 14ย�kb
Alcohol-related brain damage in humans
Chronic excessive alcohol intoxications evoke cumulative damage to tissues and organs. We examined prefrontal cortex (Brodmann’s area (BA) 9) from 20 human alcoholics and 20 age, gender, and postmortem delay matched control subjects. H & E staining and light microscopy of prefrontal cortex tissue revealed a reduction in the levels of cytoskeleton surrounding the nuclei of cortical and subcortical neurons, and a disruption of subcortical neuron patterning in alcoholic subjects. BA 9 tissue homogenisation and one dimensional polyacrylamide gel electrophoresis (PAGE) proteomics of cytosolic proteins identified dramatic reductions in the protein levels of spectrin β II, and α- and β-tubulins in alcoholics, and these were validated and quantitated by Western blotting. We detected a significant increase in α-tubulin acetylation in alcoholics, a non-significant increase in isoaspartate protein damage, but a significant increase in protein isoaspartyl methyltransferase protein levels, the enzyme that triggers isoaspartate damage repair in vivo. There was also a significant reduction in proteasome activity in alcoholics. One dimensional PAGE of membrane-enriched fractions detected a reduction in β-spectrin protein levels, and a significant increase in transmembranous α3 (catalytic) subunit of the Na+,K+-ATPase in alcoholic subjects. However, control subjects retained stable oligomeric forms of α-subunit that were diminished in alcoholics. In alcoholics, significant loss of cytosolic α- and β-tubulins were also seen in caudate nucleus, hippocampus and cerebellum, but to different levels, indicative of brain regional susceptibility to alcohol-related damage. Collectively, these protein changes provide a molecular basis for some of the neuronal and behavioural abnormalities attributed to alcoholics
Asteroseismology and Interferometry
Asteroseismology provides us with a unique opportunity to improve our
understanding of stellar structure and evolution. Recent developments,
including the first systematic studies of solar-like pulsators, have boosted
the impact of this field of research within Astrophysics and have led to a
significant increase in the size of the research community. In the present
paper we start by reviewing the basic observational and theoretical properties
of classical and solar-like pulsators and present results from some of the most
recent and outstanding studies of these stars. We centre our review on those
classes of pulsators for which interferometric studies are expected to provide
a significant input. We discuss current limitations to asteroseismic studies,
including difficulties in mode identification and in the accurate determination
of global parameters of pulsating stars, and, after a brief review of those
aspects of interferometry that are most relevant in this context, anticipate
how interferometric observations may contribute to overcome these limitations.
Moreover, we present results of recent pilot studies of pulsating stars
involving both asteroseismic and interferometric constraints and look into the
future, summarizing ongoing efforts concerning the development of future
instruments and satellite missions which are expected to have an impact in this
field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume
14, Issue 3-4, pp. 217-36
Commissioning of the BRIKEN beta-delayed neutron detector for the study of exotic neutron-rich nuclei
published_or_final_versio
Internalisation Theory and outward direct investment by emerging market multinationals
The rise of multinational enterprises from emerging countries (EMNEs) poses an important test for theories of the multinational enterprise such as internalisation theory. It has been contended that new phenomena need new theory. This paper proposes that internalisation theory is appropriate to analyse EMNEs. This paper examines four approaches to EMNEs—international investment strategies, domestic market imperfections, international corporate networks and domestic institutions—and three case studies—Chinese outward FDI, Indian foreign acquisitions and investment in tax havens—to show the enduring relevance and predictive power of internalisation theory. This analysis encompasses many other approaches as special cases of internalisation theory. The use of internalisation theory to analyse EMNEs is to be commended, not only because of its theoretical inclusivity, but also because it has the ability to connect and to explain seemingly desperate phenomena
Using Long-Term Volunteer Records to Examine Dormouse (Muscardinusavellanarius) Nestbox Selection.
Within ecology, there are unanswered questions about species-habitat interactions, which could potentially be resolved by a pragmatic analysis of a long-term volunteer-collected dataset. Here, we analysed 18 years of volunteer-collected data from a UK dormouse nestbox monitoring programme to determine the influence of habitat variables on nestbox choice by common dormice (Muscardinusavellanarius). We measured a range of habitat variables in a coppiced woodland in Gloucestershire, UK, and analysed these in relation to dormouse nestbox occupancy records (by dormice, other small mammals, and birds) collected by volunteers. While some characteristics of the woodland had changed over 18 years, simple transformation of the data and interpretation of the results indicated that the dataset was informative. Using stepwise regressions, multiple environmental and ecological factors were found to determine nestbox selection. Distance from the edge of the wood was the most influential (this did not change over 18 years), with boxes in the woodland interior being selected preferentially. There was a significant negative relationship with the presence of ferns (indicative of damp shady conditions). The presence of oak (a long-lived species), and the clumped structural complexity of the canopy were also important factors in the final model. There was no evidence of competition between dormice and birds or other mammals. The results provide greater understanding of artificial dormouse nest-site requirements and indicate that, in terms of habitat selection, long-term volunteer-collected datasets contribute usefully to understanding the requirements of species with an important conservation status
Chelators in Iron and Copper Toxicity
Purpose of Review Chelation therapy is used for diseases causing an imbalance of iron levels (for example haemochromatosis and thalassaemia) or copper levels (for example Menkes’ and Wilson’s diseases). Currently, most pharmaceutical chelators are relatively simple but often have side effects. Some have been taken off the market. This review attempts to find theory and knowledge required to design or find better chelators. Recent Findings Recent research attempting to understand the biological mechanisms of protection against iron and copper toxicity is reviewed. Understanding of molecular mechanisms behind normal iron/copper regulation may lead to the design of more sophisticated chelators. The theory of metal ion toxicity explains why some chelators, such as EDTA, which chelate metal ions in a way which exposes the ion to the surrounding environment are shown to be unsuitable except as a means of killing cancer cells. The Lewis theory of acids and bases suggests which amino acids favour the attachment of the hard/intermediate ions Fe2+, Fe3+, Cu2+ and soft ion Cu+. Non-polar amino acids will chelate the ion in a position not in contact with the surrounding cellular environment. The conclusion is that only the soft ion binding cysteine and methionine appear as suitable chelators. Clearly, nature has developed proteins which are less restricted. Recent research on naturally produced chelators such as siderophores and phytochemicals show some promise as pharmaceuticals. Summary Although an understanding of natural mechanisms of Fe/Cu regulation continues to increase, the pharmaceutical chelators for metal overload diseases remain simple non-protein molecules. Natural and synthetic alternatives have been studied but require further research before being accepted
Fungal volatile organic compounds: emphasis on their plant growth-promoting
Fungal volatile organic compounds (VOCs) commonly formed bioactive interface between plants and countless of microorganisms on the above- and below-ground plant-fungus interactions. Fungal-plant interactions symbolize intriguingly biochemical complex and challenging scenarios that are discovered by metabolomic approaches. Remarkably secondary metabolites (SMs) played a significant role in the virulence and existence with plant-fungal pathogen interaction; only 25% of the fungal gene clusters have been functionally identified, even though these numbers are too low as compared with plant secondary metabolites. The current insights on fungal VOCs are conducted under lab environments and to apply small numbers of microbes; its molecules have significant effects on growth, development, and defense system of plants. Many fungal VOCs supported dynamic processes, leading to countless interactions between plants, antagonists, and mutualistic symbionts. The fundamental role of fungal VOCs at field level is required for better understanding, so more studies will offer further constructive scientific evidences that can show the cost-effectiveness of ecofriendly and ecologically produced fungal VOCs for crop welfare
- …
