53 research outputs found

    Evaluation of sub-acute changes in cardiac function after cisplatin-based combination chemotherapy for testicular cancer

    Get PDF
    Long-term cardiovascular morbidity is increasingly observed in chemotherapy-treated testicular cancer survivors, but little is known of early sub-clinical changes in cardiac function. We prospectively evaluated cardiac function in testicular cancer patients by echocardiography. Systolic (Wall Motion Score Index) and diastolic (E/A-ratio and Tissue Velocity Imaging (TVI)) parameters, and serum levels of N-Terminal pro-Brain Natriuretic Peptide (NT-proBNP) were assessed before the start of chemotherapy and 1 year later. Echocardiography data were compared with an age-matched group of healthy controls. Forty-two patients treated with bleomycin, etoposide and cisplatin were evaluated (median age 27 years, range 18–50). Systolic function and E/A-ratio did not change, whereas the median TVI decreased (12.0 vs 10.0 cms−1; P=0.002). Median levels of NT-proBNP increased (5 vs 18 pmoll−1, P=0.034). Compared with controls, TVI before the start of chemotherapy was not significantly different. In conclusion, we found that at a median of 10 months after cisplatin-based treatment for testicular cancer, TVI decreased significantly, indicating a deterioration of diastolic cardiac function. Serum levels of NT-proBNP increased. The prognostic significance of these changes for future cardiovascular morbidity is not clear

    Screening for latent tuberculosis infection among undocumented immigrants in Swiss healthcare centres; a descriptive exploratory study

    Get PDF
    BACKGROUND: Migration is one of the major causes of tuberculosis in developed countries. Undocumented patients are usually not screened at the border and are not covered by a health insurance increasing their risk of developing the disease unnoticed. Urban health centres could help identify this population at risk. The objective of this study is to assess the prevalence of latent tuberculosis infection (LTBI) and adherence to preventive treatment in a population of undocumented immigrant patients. METHODS: All consecutive undocumented patients that visited two urban healthcare centres for vulnerable populations in Lausanne, Switzerland for the first time were offered tuberculosis screening with an interferon-gamma assay. Preventive treatment was offered if indicated. Adherence to treatment was evaluated monthly over a nine month period. RESULTS: Of the 161 participants, 131 (81.4%) agreed to screening and 125 had complete examinations. Twenty-four of the 125 patients (19.2%; CI95% 12.7;27.2) had positive interferon-gamma assay results, two of which had active tuberculosis. Only five patients with LTBI completed full preventive treatments. Five others initiated the treatment but did not follow through. CONCLUSION: Screening for tuberculosis infection in this hard-to-reach population is feasible in dedicated urban clinics, and the prevalence of LTBI is high in this vulnerable population. However, the low adherence to treatment is an important public health concern, and new strategies are needed to address this problem

    A large population of diverse neurons in the Drosophila central nervous system expresses short neuropeptide F, suggesting multiple distributed peptide functions

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Insect neuropeptides are distributed in stereotypic sets of neurons that commonly constitute a small fraction of the total number of neurons. However, some neuropeptide genes are expressed in larger numbers of neurons of diverse types suggesting that they are involved in a greater diversity of functions. One of these widely expressed genes, <it>snpf</it>, encodes the precursor of short neuropeptide F (sNPF). To unravel possible functional diversity we have mapped the distribution of transcript of the <it>snpf </it>gene and its peptide products in the central nervous system (CNS) of <it>Drosophila </it>in relation to other neuronal markers.</p> <p>Results</p> <p>There are several hundreds of neurons in the larval CNS and several thousands in the adult <it>Drosophila </it>brain expressing <it>snpf </it>transcript and sNPF peptide. Most of these neurons are intrinsic interneurons of the mushroom bodies. Additionally, sNPF is expressed in numerous small interneurons of the CNS, olfactory receptor neurons (ORNs) of the antennae, and in a small set of possibly neurosecretory cells innervating the corpora cardiaca and aorta. A sNPF-Gal4 line confirms most of the expression pattern. None of the sNPF immunoreactive neurons co-express a marker for the transcription factor DIMMED, suggesting that the majority are not neurosecretory cells or large interneurons involved in episodic bulk transmission. Instead a portion of the sNPF producing neurons co-express markers for classical neurotransmitters such as acetylcholine, GABA and glutamate, suggesting that sNPF is a co-transmitter or local neuromodulator in ORNs and many interneurons. Interestingly, sNPF is coexpressed both with presumed excitatory and inhibitory neurotransmitters. A few sNPF expressing neurons in the brain colocalize the peptide corazonin and a pair of dorsal neurons in the first abdominal neuromere coexpresses sNPF and insulin-like peptide 7 (ILP7).</p> <p>Conclusion</p> <p>It is likely that sNPF has multiple functions as neurohormone as well as local neuromodulator/co-transmitter in various CNS circuits, including olfactory circuits both at the level of the first synapse and at the mushroom body output level. Some of the sNPF immunoreactive axons terminate in close proximity to neurosecretory cells producing ILPs and adipokinetic hormone, indicating that sNPF also might regulate hormone production or release.</p

    Neuroarchitecture of Peptidergic Systems in the Larval Ventral Ganglion of Drosophila melanogaster

    Get PDF
    Recent studies on Drosophila melanogaster and other insects have revealed important insights into the functions and evolution of neuropeptide signaling. In contrast, in- and output connections of insect peptidergic circuits are largely unexplored. Existing morphological descriptions typically do not determine the exact spatial location of peptidergic axonal pathways and arborizations within the neuropil, and do not identify peptidergic in- and output compartments. Such information is however fundamental to screen for possible peptidergic network connections, a prerequisite to understand how the CNS controls the activity of peptidergic neurons at the synaptic level. We provide a precise 3D morphological description of peptidergic neurons in the thoracic and abdominal neuromeres of the Drosophila larva based on fasciclin-2 (Fas2) immunopositive tracts as landmarks. Comparing the Fas2 “coordinates” of projections of sensory or other neurons with those of peptidergic neurons, it is possible to identify candidate in- and output connections of specific peptidergic systems. These connections can subsequently be more rigorously tested. By immunolabeling and GAL4-directed expression of marker proteins, we analyzed the projections and compartmentalization of neurons expressing 12 different peptide genes, encoding approximately 75% of the neuropeptides chemically identified within the Drosophila CNS. Results are assembled into standardized plates which provide a guide to identify candidate afferent or target neurons with overlapping projections. In general, we found that putative dendritic compartments of peptidergic neurons are concentrated around the median Fas2 tracts and the terminal plexus. Putative peptide release sites in the ventral nerve cord were also more laterally situated. Our results suggest that i) peptidergic neurons in the Drosophila ventral nerve cord have separated in- and output compartments in specific areas, and ii) volume transmission is a prevailing way of peptidergic communication within the CNS. The data can further be useful to identify colocalized transmitters and receptors, and develop peptidergic neurons as new landmarks

    The Osteology of the Basal Archosauromorph Tasmaniosaurus triassicus from the Lower Triassic of Tasmania, Australia

    Get PDF
    Proterosuchidae are the most taxonomically diverse archosauromorph reptiles sampled in the immediate aftermath of the Permo-Triassic mass extinction and represent the earliest radiation of Archosauriformes (archosaurs and closely related species). Proterosuchids are potentially represented by approximately 15 nominal species collected from South Africa, China, Russia, Australia and India, but the taxonomic content of the group is currently in a state of flux because of the poor anatomic and systematic information available for several of its putative members. Here, the putative proterosuchid Tasmaniosaurus triassicus from the Lower Triassic of Hobart, Tasmania (Australia),is redescribed. The holotype and currently only known specimen includes cranial and postcranial remains and the revision of this material sheds new light on the anatomy of the animal, including new data on the cranial endocast. Several bones are re-identified or reinterpreted, contrasting with the descriptions of previous authors. The new information provided here shows that Tasmaniosaurus closely resembles the South African proterosuchid Proterosuchus, but it differed in the presence of, for example, a slightly downturned premaxilla, a shorter anterior process of maxilla, and a diamond-shaped anterior end of interclavicle. Previous claims for the presence of gut contents in the holotype of Tasmaniosaurus are considered ambiguous. The description of the cranial endocast of Tasmaniosaurus provides for the first time information about the anatomy of this region in proterosuchids. The cranial endocast preserves possibly part of the vomero-nasal (= Jacobson's) system laterally to the olfactory bulbs. Previous claims of the absence of the vomero-nasal organs in archosaurs, which is suggested by the extant phylogenetic bracket, are questioned because its absence in both clades of extant archosaurs seems to be directly related with the independent acquisition of a non-ground living mode of life

    Mapping Peptidergic Cells in Drosophila: Where DIMM Fits In

    Get PDF
    The bHLH transcription factor DIMMED has been associated with the differentiation of peptidergic cells in Drosophila. However, whether all Drosophila peptidergic cells express DIMM, and the extent to which all DIMM cells are peptidergic, have not been determined. To address these issues, we have mapped DIMM expression in the central nervous system (CNS) and periphery in the late larval stage Drosophila. At 100 hr after egg-laying, DIMM immunosignals are largely congruent with a dimm-promoter reporter (c929-GAL4) and they present a stereotyped pattern of 306 CNS cells and 52 peripheral cells. We assigned positional values for all DIMM CNS cells with respect to reference gene expression patterns, or to patterns of secondary neuroblast lineages. We could assign provisional peptide identities to 68% of DIMM-expressing CNS cells (207/306) and to 73% of DIMM-expressing peripheral cells (38/52) using a panel of 24 markers for Drosophila neuropeptide genes. Furthermore, we found that DIMM co-expression was a prevalent feature within single neuropeptide marker expression patterns. Of the 24 CNS neuropeptide gene patterns we studied, six patterns are >90% DIMM-positive, while 16 of 22 patterns are >40% DIMM-positive. Thus most or all DIMM cells in Drosophila appear to be peptidergic, and many but not all peptidergic cells express DIMM. The co-incidence of DIMM-expression among peptidergic cells is best explained by a hypothesis that DIMM promotes a specific neurosecretory phenotype we term LEAP. LEAP denotes Large cells that display Episodic release of Amidated Peptides

    A comparative study of some aspects of the biology and ecology of Sesarma Catenata ORT. and Cyclograpsus Punctatus M. EDW., with additional observationsS on Sesarma Meinerti De Man

    Get PDF
    In the estuary of the Kowie River in the Eastern Cape Province there occur two amphibious grapsoid crabs, Sesarma catenata Ort. and Cyc/ograpsus punctatus M. Edw. They live together in many places, commonly inhabiting the same burrows in the muddy banks of the river. The present exploratory study of these two species has been undertaken to enhance our knowledge of their biology as well as our understanding of the relations between these two very similar animals which live in such close proximity one to another.Zoologica Africana 4(1): 1-3
    corecore