17,909 research outputs found
PITX2 transcription factor is overexpressed and involved in the tumorigenicity of ovarian cancer
Free Paper Session - Biomedicine: abstract no. A2
Epigenetic silencing of microRNA-199b-5p is associated with acquired chemoresistance via activation of JAG1-Notch1 signaling in ovarian cancer.
Epithelial ovarian cancer is a highly lethal and aggressive gynecological malignancy. The high mortality rate is due in part to the fact that many advanced cancer patients become refractory to current chemotherapeutic agents, leading to tumor recurrence and death. However, the underlying mechanisms leading to chemoresistance remain obscure. Here, we report that the loss of miR-199b-5p due to progressive epigenetic silencing leads to the activation of the JAG1-mediated Notch1 signaling cascade, thereby leading to the development of acquired chemoresistance in ovarian cancer. Using miRCURY LNATM microRNA array and Q-PCR analyses of two pairs of cisplatin-sensitive and -resistant ovarian cancer cell lines, we identified miR-199b-5p as significantly down-regulated in cisplatin-resistant ovarian cancer cells and confirmed that miR-199b-5p is clinically associated with advanced and poor survival ovarian cancers. Interestingly, the loss of miR-199b-5p could be restored by 5-Aza-dC-mediated demethylation, and methylated specific PCR (MS-PCR), bisulfite-sequencing and pyrosequencing revealed that the promoter region of miR-199b-5p was hypermethylated. Computational and mechanistic analyses identified JAG1 as a primary target of miR-199b-5p. Notably, the reduced expression of miR-199b-5p was found to be inversely correlated with the increased expression of JAG1 using an ovarian cancer tissue array. Enforced expression of miR-199b-5p sensitized ovarian cancer cells to cisplatin-induced cytotoxicity both in vitro and in vivo. Conversely, re-expression of miR-199b-5p and siRNA-mediated JAG1 knockdown or treatment with Notch specific inhibitor γ-secretase (GSI) attenuated JAG1-Notch1 signaling activity, thereby enhancing cisplatin-mediated cell cytotoxicity. Taken together, our study suggests that the epigenetic silencing of miR-199b-5p during tumor progression is significantly associated with acquired chemoresistance in ovarian cancer through the activation of JAG1-Notch1 signaling.published_or_final_versio
Recommended from our members
In situ loading and delivery of short single- And double-stranded dna by supramolecular organic frameworks
Short DNA represents an important class of biomacromolecules that are widely applied in gene therapy, editing, and modulation. However, the development of simple and reliable methods for their intracellular delivery remains a challenge. Herein, we describe that seven water-soluble, homogeneous supramolecular organic frameworks (SOFs) with a well-defined pore size and high stability in water that can accomplish in situ inclusion of single-stranded (ss) and double-stranded (ds) DNA (21, 23, and 58 nt) and effective intracellular delivery (including two noncancerous and six cancerous cell lines). Fluorescence quenching experiments for single and double endlabeled ss- and ds-DNA support that the DNA sequences can be completely enveloped by the SOFs. Confocal laser scanning microscopy and flow cytometry reveal that five of the SOFs exhibit excellent delivery efficiencies that, in most of the studied cases, outperform the commercial standard Lipo2000, even at low SOF-nucleic acid ratios. In addition to high delivery efficiencies, the watersoluble, self-assembled SOF carriers have a variety of advantages, including convenient preparation, high stability, and in situ DNA inclusion, which are all critical for practical applications in nucleic acid delivery
Supernatants derived from chemotherapy-treated cancer cell lines can modify angiogenesis
BACKGROUND: There is evidence that tumours produce substances such as cytokines and microvesicular bodies bearing bioactive molecules, which support the carcinogenic process. Furthermore, chemotherapy has also been shown to modify these exudates and in doing so, neutralise their tumourigenic influence. METHODS: In the current study, we have investigated the effect of chemotherapy agents on modifying the cytokine profile and microvesicular cargo of supernatants derived from cancer cell lines. In addition, we have explored the effect of these tumour-derived supernatants on angiogenesis, and how chemotherapy can alter the supernatants rendering them less pro-angiogenic. RESULTS: Herein, we show that supernatants contain a rich cocktail of cytokines, a number of which are potent modulators of angiogenesis. They also contain microvesicular bodies containing RNA transcripts that code for proteins involved in transcription, immune modulation and angiogenesis. These supernatants altered intracellular signalling molecules in endothelial cells and significantly enhanced their tubulogenic character; however, this was severely compromised when supernatants from tumours treated with chemotherapy was used instead. CONCLUSION: This study suggests tumour exudates and bioactive material from tumours can influence cellular functions, and that treatment with some chemotherapy can serve to negate these pro-tumourigenic processes
Reduced expression of AMPK-β1 during tumor progression enhances the oncogenic capacity of advanced ovarian cancer
AMP-activated protein kinase (AMPK) is a key energy sensor that is involved in regulating cell metabolism. Our previous study revealed that the subunits of the heterotimeric AMPK enzyme are diversely expressed during ovarian cancer progression. However, the impact of the variable expression of these AMPK subunits in ovarian cancer oncogenesis remains obscure. Here, we provide evidence to show that reduced expression of the AMPK-beta1 subunit during tumor progression is associated with the increased oncogenic capacity of advanced ovarian cancer cells. Immunohistochemical analysis revealed that AMPK-beta1 levels were reduced in advanced-stage (P = 0.008), high-grade (P = 0.013) and metastatic ovarian cancers (P = 0.008). Intriguingly, down-regulation of AMPK-beta1 was progressively reduced from tumor stages 1 to 3 of ovarian cancer. Functionally, enforced expression of AMPK-beta1 inhibited ovarian-cancer-cell proliferation, anchorage-independent cell growth, cell migration and invasion. Conversely, depletion of AMPK-beta1 by siRNA enhanced the oncogenic capacities of ovarian cancer cells, suggesting that the loss of AMPK-beta1 favors the aggressiveness of ovarian cancer. Mechanistically, enforced expression of AMPK-beta1 increased AMPK activity, which, in turn, induced cell-cycle arrest via inhibition of AKT/ERK signaling activity as well as impaired cell migration/invasion through the suppression of JNK signaling in ovarian cancer cells. Taken together, these findings suggest that the reduced expression of AMPK-beta1 confers lower AMPK activity, which enhances the oncogenic capacity of advanced-stage ovarian cancer.published_or_final_versio
Health literacy, health status, and healthcare utilization of Taiwanese adults: results from a national survey
Abstract Background Low health literacy is considered a worldwide health threat. The purpose of this study is to assess the prevalence and socio-demographic covariates of low health literacy in Taiwanese adults and to investigate the relationships between health literacy and health status and health care utilization. Methods A national survey of 1493 adults was conducted in 2008. Health literacy was measured using the Mandarin Health Literacy Scale. Health status was measured based on self-rated physical and mental health. Health care utilization was measured based on self-reported outpatient clinic visits, emergency room visits, and hospitalizations. Results Approximately thirty percent of adults were found to have low (inadequate or marginal) health literacy. They tended to be older, have fewer years of schooling, lower household income, and reside in less populated areas. Inadequate health literacy was associated with poorer mental health (OR, 0.57; 95% CI, 0.35-0.91). No association was found between health literacy and health care utilization even after adjusting for other covariates. Conclusions Low (inadequate and marginal) health literacy is prevalent in Taiwan. High prevalence of low health literacy is not necessarily indicative of the need for interventions. Systematic efforts to evaluate the impact of low health literacy on health outcomes in other countries would help to illuminate features of health care delivery and financing systems that may mitigate the adverse health effects of low health literacy.http://deepblue.lib.umich.edu/bitstream/2027.42/78252/1/1471-2458-10-614.xmlhttp://deepblue.lib.umich.edu/bitstream/2027.42/78252/2/1471-2458-10-614.pdfPeer Reviewe
Activation of AMPK inhibits cervical cancer cell growth through AKT/FOXO3a/FOXM1 signaling cascade
published_or_final_versio
Aberrant activation of ERK/FOXM1 signaling cascade triggers the cell migration/invasion in ovarian cancer cells
Forkhead box M1 (FOXM1) is a proliferation-associated transcription factor essential for cell cycle progression. Numerous studies have documented that FOXM1 has multiple functions in tumorigenesis and its elevated levels are frequently associated with cancer progression. Here, we characterized the role of ERK/FOXM1 signaling in mediating the metastatic potential of ovarian cancer cells. Immunohistochemical (IHC), immunoblotting and semi-quantitative RT-PCR analyses found that both phospho-ERK and FOXM1 were frequently upregulated in ovarian cancers. Intriguingly, the overexpressed phospho-ERK (p<0.001) and FOXM1 (p<0.001) were significantly correlated to high-grade ovarian tumors with aggressive behavior such as metastasized lymph node (5 out of 6). Moreover, the expressions of phospho-ERK and FOXM1 had significantly positive correlation (p<0.001). Functionally, ectopic expression of FOXM1B remarkably enhanced cell migration/invasion, while FOXM1C not only increased cell proliferation but also promoted cell migration/invasion. Conversely, inhibition of FOXM1 expression by either thiostrepton or U0126 could significantly impair FOXM1 mediated oncogenic capacities. However, the down-regulation of FOXM1 by either thiostrepton or U0126 required the presence of p53 in ovarian cancer cells. Collectively, our data suggest that over-expression of FOXM1 might stem from the constitutively active ERK which confers the metastatic capabilities to ovarian cancer cells. The impairment of metastatic potential of cancer cells by FOXM1 inhibitors underscores its therapeutic value in advanced ovarian tumors. © 2011 Lok et al.published_or_final_versio
- …
