1,798 research outputs found

    CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.

    Get PDF
    Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases

    Mineral-Based Advanced Oxidation Processes for Enhancing the Removal of Antibiotic Resistance Genes from Domestic Wastewater

    Get PDF
    \ua9 2025 The Authors. Published by American Chemical Society. Wastewater treatment plants (WWTPs) release antibiotic-resistant bacteria (ARB) and antibiotic-resistant genes (ARGs) into the environment. Advanced oxidation processes (AOPs) can remove ARB and ARGs, but they often require impractically high chemical or energy use. Here, we explore a low-energy AOP that uses Fe-bearing clay mineral (NAu-1) either combined with H2O2 (H2O2/NAu-1) or as prereduced structural Fe (rNAu-1) to degrade selected ARGs (i.e., tetM, tetQ, and blaOXA-10), int1 (a mobile genetic element), and the 16S rRNA gene in postsecondary WWTP effluents. Addition of H2O2/NAu-1 significantly increased tetM and int1 removals relative to UV irradiation and H2O2/UV (p ≤ 0.02). Removals increased with greater H2O2 doses and contact times, reaching maximum values of 1.2 and 2.3 log units at H2O2 doses of 0.26 and 10 mM and contact times of 4 and 8 h, respectively. Bacterial regrowth after 24 h of contact was probably due to H2O2 depletion. However, the addition of rNAu-1 achieved the highest removals, up to 2.9 log units after 0.5 h, and suppressed bacterial regrowth over 24 h. Similar removals were observed with rNAu-1 under oxic and anoxic conditions. Results show that mineral-based AOPs offer the potential for elevated ARG removal and lower chemical and energy demands in tertiary wastewater treatment

    Operator theory and function theory in Drury-Arveson space and its quotients

    Full text link
    The Drury-Arveson space Hd2H^2_d, also known as symmetric Fock space or the dd-shift space, is a Hilbert function space that has a natural dd-tuple of operators acting on it, which gives it the structure of a Hilbert module. This survey aims to introduce the Drury-Arveson space, to give a panoramic view of the main operator theoretic and function theoretic aspects of this space, and to describe the universal role that it plays in multivariable operator theory and in Pick interpolation theory.Comment: Final version (to appear in Handbook of Operator Theory); 42 page

    Mantle thermal pulses below the Mid-Atlantic Ridge and temporal variations in the formation of oceanic lithosphere

    Get PDF
    A 20-Myr record of creation of oceanic lithosphere is exposed along a segment of the central Mid-Atlantic Ridge on an uplifted sliver of lithosphere. The degree of melting of the mantle that is upwelling below the ridge, estimated from the chemistry of the exposed mantle rocks, as well as crustal thickness inferred from gravity measurements, show oscillations of 3–4 Myr superimposed on a longer-term steady increase with time. The time lag between oscillations of mantle melting and crustal thickness indicates that the mantle is upwelling at an average rate of 25 mm yr-1, but this appears to vary through time. Slow-spreading lithosphere seems to form through dynamic pulses of mantle upwelling and melting, leading not only to along-axis segmentation but also to across-axis structural variability. Also, the central Mid-Atlantic Ridge appears to have become steadily hotter over the past 20 Myr, possibly owing to north–south mantle flow

    Antimicrobial resistance in rural rivers: Comparative study of the Coquet (Northumberland) and Eden (Cumbria) River catchments

    Get PDF
    \ua9 2024 The Author(s)Many studies have characterised resistomes in river microbial communities. However, few have compared resistomes in parallel rural catchments that have few point-source inputs of antimicrobial genes (ARGs) and organisms (i.e., AMR) – catchments where one can contrast more nebulous drivers of AMR in rural rivers. Here, we used quantitative microbial profiling (QMP) to compare resistomes and microbiomes in two rural river catchments in Northern England, the Coquet and Eden in Northumberland and Cumbria, respectively, with different hydrological and geographical conditions. The Eden has higher flow rates, higher annual surface runoff, and longer periods of soil saturation, whereas the Coquet is drier and has lower flowrates. QMP analysis showed the Eden contained significantly more abundant microbes associated with soil sources, animal faeces, and wastewater than the Coquet, which had microbiomes like less polluted rivers (Wilcoxon test, p < 0.01). The Eden also had greater ARG abundances and resistome diversity (Kruskal Wallis, p < 0.05), and higher levels of potentially clinically relevant ARGs. The Eden catchment had greater and flashier runoff and more extensive agricultural land use in its middle reach, which explains higher levels of AMR in the river. Hydrological and geographic factors drive AMR in rural rivers, which must be considered in environmental monitoring programmes

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT
    corecore