25 research outputs found

    Re-Evaluation of the Action Potential Upstroke Velocity as a Measure of the Na+ Current in Cardiac Myocytes at Physiological Conditions

    Get PDF
    Background: The SCN5A encoded sodium current (INa) generates the action potential (AP) upstroke and is a major determinant of AP characteristics and AP propagation in cardiac myocytes. Unfortunately, in cardiac myocytes, investigation of kinetic properties of INa with near-physiological ion concentrations and temperature is technically challenging due to the large amplitude and rapidly activating nature of INa, which may seriously hamper the quality of voltage control over the membrane. We hypothesized that the alternating voltage clamp-current clamp (VC/CC) technique might provide an alternative to traditional voltage clamp (VC) technique for the determination of INa properties under physiological conditions. Principal Findings: We studied INa under close-to-physiological conditions by VC technique in SCN5A cDNA-transfected HEK cells or by alternating VC/CC technique in both SCN5A cDNA-transfected HEK cells and rabbit left ventricular myocytes. In these experiments, peak INa during a depolarizing VC step or maximal upstroke velocity, dV/dtmax, during VC/CC served as an indicator of available INa. In HEK cells, biophysical properties of INa, including current density, voltage dependent (in)activation, development of inactivation, and recovery from inactivation, were highly similar in VC and VC/CC experiments. As an application of the VC/CC technique we studied INa in left ventricular myocytes isolated from control or failing rabbit hearts

    Comparison of Gating Properties and Use-Dependent Block of Nav1.5 and Nav1.7 Channels by Anti-Arrhythmics Mexiletine and Lidocaine

    No full text
    Mexiletine and lidocaine are widely used class IB anti-arrhythmic drugs that are considered to act by blocking voltage-gated open sodium currents for treatment of ventricular arrhythmias and relief of pain. To gain mechanistic insights into action of anti-arrhythmics, we characterized biophysical properties of Na(v)1.5 and Na(v)1.7 channels stably expressed in HEK293 cells and compared their use-dependent block in response to mexiletine and lidocaine using whole-cell patch clamp recordings. While the voltage-dependent activation of Na(v)1.5 or Na(v)1.7 was not affected by mexiletine and lidocaine, the steady-state fast and slow inactivation of Na(v)1.5 and Na(v)1.7 were significantly shifted to hyperpolarized direction by either mexiletine or lidocaine in dose-dependent manner. Both mexiletine and lidocaine enhanced the slow component of closed-state inactivation, with mexiletine exerting stronger inhibition on either Na(v)1.5 or Na(v)1.7. The recovery from inactivation of Na(v)1.5 or Na(v)1.7 was significantly prolonged by mexiletine compared to lidocaine. Furthermore, mexiletine displayed a pronounced and prominent use-dependent inhibition of Na(v)1.5 than lidocaine, but not Na(v)1.7 channels. Taken together, our findings demonstrate differential responses to blockade by mexiletine and lidocaine that preferentially affect the gating of Na(v)1.5, as compared to Na(v)1.7; and mexiletine exhibits stronger use-dependent block of Na(v)1.5. The differential gating properties of Na(v)1.5 and Na(v)1.7 in response to mexiletine and lidocaine may help explain the drug effectiveness and advance in new designs of safe and specific sodium channel blockers for treatment of cardiac arrhythmia or pain

    Ground-Based Soil Moisture Determination

    No full text
    Soil water content is a key variable for understanding and modeling ecohydrological processes. In this chapter, we review the state of the art of ground-based methods to characterize the spatiotemporal dynamic of soil water content, from point to field scale. First, point measurements methods are briefly discussed. Then, field-scale hydrogeophysical approaches such as ground-penetrating radar, ground-based L-band radiometry, electromagnetic induction, electrical resistivity tomography, cosmic-ray neutron probes, global navigation satellite system reflectometry, and nuclear magnetic resonance are described in more details. The basic principles of the different techniques, the spatial and temporal characteristics of their measurements, their advantages and limitations, as well as the recent developments in the data processing are presented
    corecore