75 research outputs found

    A novel approach to simulate gene-environment interactions in complex diseases

    Get PDF
    Background: Complex diseases are multifactorial traits caused by both genetic and environmental factors. They represent the major part of human diseases and include those with largest prevalence and mortality (cancer, heart disease, obesity, etc.). Despite a large amount of information that has been collected about both genetic and environmental risk factors, there are few examples of studies on their interactions in epidemiological literature. One reason can be the incomplete knowledge of the power of statistical methods designed to search for risk factors and their interactions in these data sets. An improvement in this direction would lead to a better understanding and description of gene-environment interactions. To this aim, a possible strategy is to challenge the different statistical methods against data sets where the underlying phenomenon is completely known and fully controllable, for example simulated ones. Results: We present a mathematical approach that models gene-environment interactions. By this method it is possible to generate simulated populations having gene-environment interactions of any form, involving any number of genetic and environmental factors and also allowing non-linear interactions as epistasis. In particular, we implemented a simple version of this model in a Gene-Environment iNteraction Simulator (GENS), a tool designed to simulate case-control data sets where a one gene-one environment interaction influences the disease risk. The main aim has been to allow the input of population characteristics by using standard epidemiological measures and to implement constraints to make the simulator behaviour biologically meaningful. Conclusions: By the multi-logistic model implemented in GENS it is possible to simulate case-control samples of complex disease where gene-environment interactions influence the disease risk. The user has full control of the main characteristics of the simulated population and a Monte Carlo process allows random variability. A knowledge-based approach reduces the complexity of the mathematical model by using reasonable biological constraints and makes the simulation more understandable in biological terms. Simulated data sets can be used for the assessment of novel statistical methods or for the evaluation of the statistical power when designing a study

    Structural Analysis of Papain-Like NlpC/P60 Superfamily Enzymes with a Circularly Permuted Topology Reveals Potential Lipid Binding Sites

    Get PDF
    NlpC/P60 superfamily papain-like enzymes play important roles in all kingdoms of life. Two members of this superfamily, LRAT-like and YaeF/YiiX-like families, were predicted to contain a catalytic domain that is circularly permuted such that the catalytic cysteine is located near the C-terminus, instead of at the N-terminus. These permuted enzymes are widespread in virus, pathogenic bacteria, and eukaryotes. We determined the crystal structure of a member of the YaeF/YiiX-like family from Bacillus cereus in complex with lysine. The structure, which adopts a ligand-induced, “closed” conformation, confirms the circular permutation of catalytic residues. A comparative analysis of other related protein structures within the NlpC/P60 superfamily is presented. Permutated NlpC/P60 enzymes contain a similar conserved core and arrangement of catalytic residues, including a Cys/His-containing triad and an additional conserved tyrosine. More surprisingly, permuted enzymes have a hydrophobic S1 binding pocket that is distinct from previously characterized enzymes in the family, indicative of novel substrate specificity. Further analysis of a structural homolog, YiiX (PDB 2if6) identified a fatty acid in the conserved hydrophobic pocket, thus providing additional insights into possible function of these novel enzymes

    Moult cycle specific differential gene expression profiling of the crab Portunus pelagicus

    Get PDF
    Background: Crustacean moulting is a complex process involving many regulatory pathways. A holistic approach to examine differential gene expression profiles of transcripts relevant to the moulting process, across all moult cycle stages, was used in this study. Custom cDNA microarrays were constructed for Portunus pelagicus. The printed arrays contained 5000 transcripts derived from both the whole organism, and from individual organs such as the brain, eyestalk, mandibular organ and Y-organ from all moult cycle stages.Results: A total of 556 clones were sequenced from the cDNA libraries used to construct the arrays. These cDNAs represented 175 singletons and 62 contigs, resulting in 237 unique putative genes. The gene sequences were classified into the following biological functions: cuticular proteins associated with arthropod exoskeletons, farnesoic acid O-methyltransferase (FaMeT), proteins belonging to the hemocyanin gene family, lectins, proteins relevant to lipid metabolism, mitochondrial proteins, muscle related proteins, phenoloxidase activators and ribosomal proteins. Moult cycle-related differential expression patterns were observed for many transcripts. Of particular interest were those relating to the formation and hardening of the exoskeleton, and genes associated with cell respiration and energy metabolism.Conclusions: The expression data presented here provide a chronological depiction of the molecular events associated with the biological changes that occur during the crustacean moult cycle. Tracing the temporal expression patterns of a large variety of transcripts involved in the moult cycle of P. pelagicus can provide a greater understanding of gene function, interaction, and regulation of both known and new genes with respect to the moulting process

    Comprehensive analysis of the ATM, CHEK2 and ERBB2 genes in relation to breast tumour characteristics and survival: a population-based case-control and follow-up study

    Get PDF
    BACKGROUND: Mutations in the ataxia-telangiectasia mutated (ATM) and checkpoint kinase 2 (CHEK2) genes and amplification of the v-erb-b2 avian erythroblastic leukemia viral oncogene homolog 2 (ERBB2) gene have been suggested to have an important role in breast cancer aetiology. However, whether common variation in these genes has a role in the development of breast cancer or breast cancer survival in humans is still not clear. METHODS: We performed a comprehensive haplotype analysis of the ATM, CHEK2 and ERBB2 genes in a Swedish population-based study, which included 1,579 breast cancer cases and 1,516 controls. We followed the cases for 8.5 years, on average, and retrieved information on the date and cause of death during that period from the nationwide Swedish causes of death registry. We selected seven haplotype-tagging SNPs (tagSNPs) in the ATM gene, six tagSNPs in the CHEK2 gene and seven tagSNPs in the ERBB2 gene that predicted both haplotypic and single locus variations in the respective genes with R(2 )values ≥ 0.8. These tagSNPs were genotyped in the complete set of cases and controls. We computed expected haplotype dosages of the tagSNP haplotypes and included the dosages as explanatory variables in Cox proportional hazards or logistic regression models. RESULTS: We found no association between any genetic variation in the ATM, CHEK2 or ERBB2 genes and breast cancer survival or the risk of developing tumours with certain characteristics. CONCLUSION: Our results indicate that common variants in the ATM, CHEK2 or ERBB2 genes are not involved in modifying breast cancer survival or the risk of tumour-characteristic-defined breast cancer

    Structure and Function of the First Full-Length Murein Peptide Ligase (Mpl) Cell Wall Recycling Protein

    Get PDF
    Bacterial cell walls contain peptidoglycan, an essential polymer made by enzymes in the Mur pathway. These proteins are specific to bacteria, which make them targets for drug discovery. MurC, MurD, MurE and MurF catalyze the synthesis of the peptidoglycan precursor UDP-N-acetylmuramoyl-L-alanyl-γ-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine by the sequential addition of amino acids onto UDP-N-acetylmuramic acid (UDP-MurNAc). MurC-F enzymes have been extensively studied by biochemistry and X-ray crystallography. In Gram-negative bacteria, ∼30–60% of the bacterial cell wall is recycled during each generation. Part of this recycling process involves the murein peptide ligase (Mpl), which attaches the breakdown product, the tripeptide L-alanyl-γ-D-glutamyl-meso-diaminopimelate, to UDP-MurNAc. We present the crystal structure at 1.65 Å resolution of a full-length Mpl from the permafrost bacterium Psychrobacter arcticus 273-4 (PaMpl). Although the Mpl structure has similarities to Mur enzymes, it has unique sequence and structure features that are likely related to its role in cell wall recycling, a function that differentiates it from the MurC-F enzymes. We have analyzed the sequence-structure relationships that are unique to Mpl proteins and compared them to MurC-F ligases. We have also characterized the biochemical properties of this enzyme (optimal temperature, pH and magnesium binding profiles and kinetic parameters). Although the structure does not contain any bound substrates, we have identified ∼30 residues that are likely to be important for recognition of the tripeptide and UDP-MurNAc substrates, as well as features that are unique to Psychrobacter Mpl proteins. These results provide the basis for future mutational studies for more extensive function characterization of the Mpl sequence-structure relationships

    Comparative genomic analysis of innate immunity reveals novel and conserved components in crustacean food crop species

    Get PDF
    Abstract Background Growing global demands for crustacean food crop species have driven large investments in aquaculture research worldwide. However, large-scale production is susceptible to pathogen-mediated destruction particularly in developing economies. Thus, a thorough understanding of the immune system components of food crop species is imperative for research to combat pathogens. Results Through a comparative genomics approach utilising extant data from 55 species, we describe the innate immune system of the class Malacostraca, which includes all food crop species. We identify 7407 malacostracan genes from 39 gene families implicated in different aspects of host defence and demonstrate dynamic evolution of innate immunity components within this group. Malacostracans have achieved flexibility in recognising infectious agents through divergent evolution and expansion of pathogen recognition receptors genes. Antiviral RNAi, Toll and JAK-STAT signal transduction pathways have remained conserved within Malacostraca, although the Imd pathway appears to lack several key components. Immune effectors such as the antimicrobial peptides (AMPs) have unique evolutionary profiles, with many malacostracan AMPs not found in other arthropods. Lastly, we describe four putative novel immune gene families, potentially representing important evolutionary novelties of the malacostracan immune system. Conclusion Our analyses across the broader Malacostraca have allowed us to not only draw analogies with other arthropods but also to identify evolutionary novelties in immune modulation components and form strong hypotheses as to when key pathways have evolved or diverged. This will serve as a key resource for future immunology research in crustacean food crops

    Structural basis for myosin V discrimination between distinct cargoes

    No full text
    Myosin V molecular motors move cargoes on actin filaments. A myosin V may move multiple cargoes to distinct places at different times. The cargoes attach to the globular tail of myosin V via cargo-specific receptors. Here we report the crystal structure at 2.2 Å of the myosin V globular tail. The overall tertiary structure has not been previously observed. There are several patches of highly conserved regions distributed on the surface of the tail. These are candidate attachment sites for cargo-specific receptors. Indeed, we identified a region of five conserved surface residues that are solely required for vacuole inheritance. Likewise, we identified a region of five conserved surface residues that are required for secretory vesicle movement, but not vacuole movement. These two regions are at opposite ends of the oblong-shaped cargo-binding domain, and moreover are offset by 180°. The fact that the cargo-binding areas are distant from each other and simultaneously exposed on the surface of the globular tail suggests that major targets for the regulation of cargo attachment are organelle-specific myosin V receptors

    Influence of vascular endothelial growth factor single nucleotide polymorphisms on tumour development in cutaneous malignant melanoma

    No full text
    Vascular endothelial growth factor (VEGF) is a potent regulator of vasculogenesis and tumour angiogenesis. We have investigated whether the VEGF -2578, -1154, +405 and +936 SNPs and associated haplotypes confer susceptibility to and/or influence prognosis in cutaneous malignant melanoma (CMM) skin cancer. A total of 152 CMM patients and 266 controls were genotyped for VEGF promoter SNPs by ARMS-PCR. Strong linkage disequilibrium between the -2578, -1154 and +405 SNPs was detected (association, rho = 0.488-0.965), but not between these SNPs and SNP +936 (association, rho = 0.004-0.130). No SNPs or three SNP haplotypes (-2578, -1154, +405) were significantly associated with CMM, although a number of non-significant trends were observed. However, the VEGF -1154 AA genotype and -2578, -1154, +405 CAC haplotype were both significantly associated with less advanced (Stage 1) disease (P = 0.03). In addition, the VEGF -1154 AA genotype was associated with thinner primary vertical growth phase tumours (P = 0.002), while VEGF -1154 GG was associated with thicker primary tumours (P = 0.02). These preliminary results indicate that VEGF genotype may influence tumour growth in CMM, possibly via the effects of differential VEGF expression on tumour angiogenesis
    corecore