21 research outputs found
Ablation of capsaicin-sensitive afferent nerves affects insulin response during an intravenous glucose tolerance test
We investigated the role of sensory nerves in glucose tolerance in conscious Wistar rats neonatally treated with neurotoxin capsaicin or vehicle. Intravenous glucose tolerance tests (IVGTT, 150, 300 and 450 mg in 30 min) were performed to measure glucose tolerance, and glucose, insulin and glucagon levels were measured. Higher glucose concentration resulted in a greater insulin response in both capsaicin- and vehicle-treated rats. However, glucose-stimulated insulin secretion was attenuated in capsaicin-treated animals, even though glucose levels did not differ. Glucagon levels did not differ between both groups. These results show that capsaicin-sensitive nerves are involved in glucose-stimulated insulin secretion, but are not directly involved in the regulation of blood glucose levels. Moreover, they suggest that capsaicin-sensitive nerves could be involved in the regulation of insulin sensitivity. We hypothesize that sensory afferents could play a role in the aetiology of pathologies where glucohomeostatic mechanisms are disturbed, as is in type 2 diabetes mellitus. (c) 2005 Elsevier Inc. All rights reserved
Selective Targeting of TRPV1 Expressing Sensory Nerve Terminals in the Spinal Cord for Long Lasting Analgesia
Chronic pain is a major clinical problem and opiates are often the only treatment, but they cause significant problems ranging from sedation to deadly respiratory depression. Resiniferatoxin (RTX), a potent agonist of Transient Receptor Potential Vanilloid 1 (TRPV1), causes a slow, sustained and irreversible activation of TRPV1 and increases the frequency of spontaneous excitatory postsynaptic currents, but causes significant depression of evoked EPSCs due to nerve terminal depolarization block. Intrathecal administration of RTX to rats in the short-term inhibits nociceptive synaptic transmission, and in the long-term causes a localized, selective ablation of TRPV1-expressing central sensory nerve terminals leading to long lasting analgesia in behavioral models. Since RTX actions are selective for central sensory nerve terminals, other efferent functions of dorsal root ganglion neurons can be preserved. Preventing nociceptive transmission at the level of the spinal cord can be a useful strategy to treat chronic, debilitating and intractable pain
Expression of Transient Receptor Potential Ankyrin 1 (TRPA1) and Its Role in Insulin Release from Rat Pancreatic Beta Cells
<div><h3>Objective</h3><p>Several transient receptor potential (TRP) channels are expressed in pancreatic beta cells and have been proposed to be involved in insulin secretion. However, the endogenous ligands for these channels are far from clear. Here, we demonstrate the expression of the transient receptor potential ankyrin 1 (TRPA1) ion channel in the pancreatic beta cells and its role in insulin release. TRPA1 is an attractive candidate for inducing insulin release because it is calcium permeable and is activated by molecules that are produced during oxidative glycolysis.</p> <h3>Methods</h3><p>Immunohistochemistry, RT-PCR, and Western blot techniques were used to determine the expression of TRPA1 channel. Ca<sup>2+</sup> fluorescence imaging and electrophysiology (voltage- and current-clamp) techniques were used to study the channel properties. TRPA1-mediated insulin release was determined using ELISA.</p> <h3>Results</h3><p>TRPA1 is abundantly expressed in a rat pancreatic beta cell line and freshly isolated rat pancreatic beta cells, but not in pancreatic alpha cells. Activation of TRPA1 by allyl isothiocyanate (AITC), hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), 4-hydroxynonenal (4-HNE), and cyclopentenone prostaglandins (PGJ<sub>2</sub>) and a novel agonist methylglyoxal (MG) induces membrane current, depolarization, and Ca<sup>2+</sup> influx leading to generation of action potentials in a pancreatic beta cell line and primary cultured pancreatic beta cells. Activation of TRPA1 by agonists stimulates insulin release in pancreatic beta cells that can be inhibited by TRPA1 antagonists such as HC030031 or AP-18 and by RNA interference. TRPA1-mediated insulin release is also observed in conditions of voltage-gated Na<sup>+</sup> and Ca<sup>2+</sup> channel blockade as well as ATP sensitive potassium (K<sub>ATP</sub>) channel activation.</p> <h3>Conclusions</h3><p>We propose that endogenous and exogenous ligands of TRPA1 cause Ca<sup>2+</sup> influx and induce basal insulin release and that TRPA1-mediated depolarization acts synergistically with K<sub>ATP</sub> channel blockade to facilitate insulin release.</p> </div
TRPV1 antagonists as novel anti-diabetic agents: regulation of oral glucose tolerance and insulin secretion through reduction of low-grade inflammation?
With a global prevalence among adults over 18 years of age approaching 9%, Type 2 diabetes mellitus (T2DM) has reached pandemic proportions and represents a major unmet medical need. To date, no disease modifying treatment is available for T2DM patients. Accumulating evidence suggest that the sensory nervous system is involved in the progression of T2DM by maintaining low-grade inflammation via the vanilloid (capsaicin) receptor, Transient Receptor Potential Vanilloid-1 (TRPV1). In this study, we tested the hypothesis that TRPV1 is directly involved in glucose homeostasis in rodents. TRPV1 receptor knockout mice (Trpv1−/−) and their wild-type littermates were kept on high-fat diet for 15 weeks. Moreover, Zucker obese rats were given the small molecule TRPV1 antagonist, N-(4-Tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (BCTC), per os twice-a-day or vehicle for eight days. Oral glucose tolerance and glucose-stimulated insulin secretion was improved by both genetic inactivation (Trpv1−/− mice) and pharmacological blockade (BCTC) of TRPV1. In the obese rat, the improved glucose tolerance was accompanied by a reduction in inflammatory markers in the mesenteric fat, suggesting that blockade of low-grade inflammation contributes to the positive effect of TRPV1 antagonism on glucose metabolism. We propose that TRPV1 could be a promising therapeutic target in T2DM by improving glucose intolerance and correcting dysfunctional insulin secretion.</jats:p
Plasma calcitonin gene-related peptide is increased prior to obesity, and sensory nerve desensitization by capsaicin improves oral glucose tolerance in obese Zucker rats
Objective: It has earlier been demonstrated that capsaicin-induced desensitization improves insulin sensitivity in normal rats. However, whether increased capsaicin-sensitive nerve activity precedes the onset of insulin resistance in diet-induced obesity - and therefore might be involved in the pathophysiology - is not known. Further, it is of relevance to investigate whether capsaicin desensitization improves glycaemic control even in obese individuals and we therefore chose the obese Zucker rats to test this. Design and methods: Plasma levels of calcitonin gene-related peptide (CGRP; a marker of sensory nerve activity) was assessed in 8-week-old Zucker rats. To investigate whether capsaicin desensitization (100 mg/kg at 9 weeks of age) would also ameliorate glycaemia in this non-diabetic model, we assessed oral glucose tolerance at 7 weeks after capsaicin. Results: It was found that plasma CGRP levels were elevated in obese Zucker rats prior to the onset of obesity (16.1 +/- 3.4 pmol/l in pre-obese Zucker rats vs 6.9 +/- 1.1 pmol/l in lean littermates; P = 0.015) despite similar body weights. Furthermore, capsaicin desensitization reduced both fasting blood glucose (4.3 +/- 0.2 mmol/l vs 5.1 +/- 0.2 mmol/l in controls; P = 0.050) as well as the mean blood glucose level during an oral glucose tolerance test (OGTT) (6.8 +/- 0.3 mmol/l vs 8.6 +/- 0.5 mmol/l in control obese rats; P = 0.024) whereas the plasma insulin levels during the OGTT were unchanged. However this did not lead to an improvement in insulin resistance or to a reduction of tissue triglyceride accumulation in muscle or liver. Conclusion: We concluded that capsaicin-induced sensory nerve desensitization improves glucose tolerance in Zucker rats. Since, in this study, plasma CGRP levels, a marker of sensory nerve activity, were increased in the pre-obese rats, our data support the hypothesis that increased activity of sensory nerves precedes the development of obesity and insulin resistance in Zucker rats
