1,944 research outputs found
Osteopontin as potential biomarker and therapeutic target in gastric and liver cancers
published_or_final_versio
Direct numerical simulation of hypersonic boundary layer transition over a blunt cone with a small angle of attack
The direct numerical simulation of boundary layer transition over a 5° half-cone-angle blunt cone is performed. The free-stream Mach number is 6 and the angle of attack is 1°. Random wall blow-and-suction perturbations are used to trigger the transition. Different from the authors’ previous work [Li et al., AIAA J. 46, 2899(2008)], the whole boundary layer flow over the cone is simulated (while in the author’s previous work, only two 45° regions around the leeward and the windward sections are simulated). The transition location on the cone surface is determined through the rapid increase in skin fraction coefficient (Cf). The transition line on the cone surface shows a nonmonotonic curve and the transition is delayed in the range of 0° ≤ θ ≤ 30° (θ = 0° is the leeward section). The mechanism of the delayed transition is studied by using joint frequency spectrum analysis and linear stability theory (LST). It is shown that the growth rates of unstable waves of the second mode are suppressed in the range of 20° ≤ θ ≤ 30°, which leads to the delayed transition location. Very low frequency waves VLFWs� are found in the time series recorded just before the transition location, and the periodic times of VLFWs are about one order larger than those of ordinary Mack second mode waves. Band-pass filter is used to analyze the low frequency waves, and they are deemed as the effect of large scale nonlinear perturbations triggered by LST waves when they are strong enough.The direct numerical simulation of boundary layer transition over a 5° half-cone-angle blunt cone is performed. The free-stream Mach number is 6 and the angle of attack is 1°. Random wall blow-and-suction perturbations are used to trigger the transition. Different from the authors’ previous work [ Li et al., AIAA J. 46, 2899 (2008) ], the whole boundary layer flow over the cone is simulated (while in the author’s previous work, only two 45° regions around the leeward and the windward sections are simulated). The transition location on the cone surface is determined through the rapid increase in skin fraction coefficient (Cf). The transition line on the cone surface shows a nonmonotonic curve and the transition is delayed in the range of 20° ≤ θ ≤ 30° (θ = 0° is the leeward section). The mechanism of the delayed transition is studied by using joint frequency spectrum analysis and linear stability theory (LST). It is shown that the growth rates of unstable waves of the second mode are suppressed in the range of 20° ≤ θ ≤ 30°, which leads to the delayed transition location. Very low frequency waves (VLFWs) are found in the time series recorded just before the transition location, and the periodic times of VLFWs are about one order larger than those of ordinary Mack second mode waves. Band-pass filter is used to analyze the low frequency waves, and they are deemed as the effect of large scale nonlinear perturbations triggered by LST waves when they are strong enough
Josephson supercurrent through a topological insulator surface state
Topological insulators are characterized by an insulating bulk with a finite
band gap and conducting edge or surface states, where charge carriers are
protected against backscattering. These states give rise to the quantum spin
Hall effect without an external magnetic field, where electrons with opposite
spins have opposite momentum at a given edge. The surface energy spectrum of a
threedimensional topological insulator is made up by an odd number of Dirac
cones with the spin locked to the momentum. The long-sought yet elusive
Majorana fermion is predicted to arise from a combination of a superconductor
and a topological insulator. An essential step in the hunt for this emergent
particle is the unequivocal observation of supercurrent in a topological phase.
Here, we present the first measurement of a Josephson supercurrent through a
topological insulator. Direct evidence for Josephson supercurrents in
superconductor (Nb) - topological insulator (Bi2Te3) - superconductor e-beam
fabricated junctions is provided by the observation of clear Shapiro steps
under microwave irradiation, and a Fraunhofer-type dependence of the critical
current on magnetic field. The dependence of the critical current on
temperature and length shows that the junctions are in the ballistic limit.
Shubnikov-de Haas oscillations in magnetic fields up to 30 T reveal a
topologically non-trivial two-dimensional surface state. We argue that the
ballistic Josephson current is hosted by this surface state despite the fact
that the normal state transport is dominated by diffusive bulk conductivity.
The lateral Nb-Bi2Te3-Nb junctions hence provide prospects for the realization
of devices supporting Majorana fermions
Preliminary study on the utilization of Ca2+ and HCO3 − in karst water by different sources of Chlorella vulgaris
This article aims to present a picture of how a university discipline has been created in Lithuania, given the background of changes caused by the Lithuania’s emancipation from the Soviet Union. The theoretical frame of reference is provided by a modified model of Bronfenbrenners developmental ecology. Data collection has primarily been in the form of interviews with university staff from Lithuanian institutions for higher education. In addition to the interviews, literature lists, course schedules and other key documents have been collected and analysed. The analysis focuses on individual’s conceptualisation of three main areas. The study demonstrates how the creation of management and economics as a university discipline in Lithuania has been formed by a combination of political/ideological, economic, institutional and individual factors. One of the study’s main contributions is to highlight the significance of the concept of academic freedom and to focus on the paradox, where constraint under the old system is replaced by another form of constraint. In this case, where the rigidity of the old Soviet doctrine is replaced by a new freedom; but instead of being given greater opportunities to influence and change the subject, the academic staff are forced into a position where, once again they are subjugated to the influences of international sources
A Mathematical model for Astrocytes mediated LTP at Single Hippocampal Synapses
Many contemporary studies have shown that astrocytes play a significant role
in modulating both short and long form of synaptic plasticity. There are very
few experimental models which elucidate the role of astrocyte over Long-term
Potentiation (LTP). Recently, Perea & Araque (2007) demonstrated a role of
astrocytes in induction of LTP at single hippocampal synapses. They suggested a
purely pre-synaptic basis for induction of this N-methyl-D- Aspartate (NMDA)
Receptor-independent LTP. Also, the mechanisms underlying this pre-synaptic
induction were not investigated. Here, in this article, we propose a
mathematical model for astrocyte modulated LTP which successfully emulates the
experimental findings of Perea & Araque (2007). Our study suggests the role of
retrograde messengers, possibly Nitric Oxide (NO), for this pre-synaptically
modulated LTP.Comment: 51 pages, 15 figures, Journal of Computational Neuroscience (to
appear
Experimental studies of e + e -→ some charmless processes containing K S0 at √s = 3.773 and 3.65 GeV
We measure the observed cross sections for the charmless processes e + e -→K S0 K - K - K + π ++ c.c., K S0 K - π + η+c.c., K S0 K - π + π + π - η+c.c., K S0 K - K - K + π + η+c.c., K S0 K - K - K + π + π 0+c.c., K S0 K - ρ ++c.c. and K S0 K - π + ρ 0+c.c. We also extract upper limits on the branching fractions for ψ(3770) decays into these final states at 90% C.L. Analyzed data samples correspond to 17.3 pb-1 and 6.5 pb-1 integrated luminosities registered, respectively, at √s = 3.773 and 3.65 GeV, with the BES-II detector at the BEPC collider. © 2009 Springer-Verlag / Società Italiana di Fisica.published_or_final_versionSpringer Open Choice, 21 Feb 201
Asynchronous combinatorial action of four regulatory factors activates Bcl11b for T cell commitment
During T cell development, multipotent progenitors relinquish competence for other fates and commit to the T cell lineage by turning on Bcl11b, which encodes a transcription factor. To clarify lineage commitment mechanisms, we followed developing T cells at the single-cell level using Bcl11b knock-in fluorescent reporter mice. Notch signaling and Notch-activated transcription factors collaborate to activate Bcl11b expression irrespectively of Notch-dependent proliferation. These inputs work via three distinct, asynchronous mechanisms: an early locus 'poising' function dependent on TCF-1 and GATA-3, a stochastic-permissivity function dependent on Notch signaling, and a separate amplitude-control function dependent on Runx1, a factor already present in multipotent progenitors. Despite their necessity for Bcl11b expression, these inputs act in a stage-specific manner, providing a multitiered mechanism for developmental gene regulation
Emodin Suppresses Migration and Invasion through the Modulation of CXCR4 Expression in an Orthotopic Model of Human Hepatocellular Carcinoma
10.1371/journal.pone.0057015PLoS ONE83
What Does It Take to Synergistically Combine Sub-Potent Natural Products into Drug-Level Potent Combinations?
10.1371/journal.pone.0049969PLoS ONE711
Tumor surveillance by circulating microRNAs: a hypothesis
A growing body of experimental evidence supports the diagnostic relevance of circulating microRNAs in various diseases including cancer. The biological relevance of circulating microRNAs is, however, largely unknown, particularly in healthy individuals. Here, we propose a hypothesis based on the relative abundance of microRNAs with predominant tumor suppressor activity in the blood of healthy individuals. According to our hypothesis, certain sets of circulating microRNAs might function as a tumor surveillance mechanism exerting continuous inhibition on tumor formation. The microRNA-mediated tumor surveillance might complement cancer immune surveillance
- …
