169 research outputs found

    Naodesheng Pills Ameliorate Cerebral Ischemia Reperfusion-Induced Ferroptosis via Inhibition of the ERK1/2 Signaling Pathway

    Get PDF
    Yong-Yu Yang,1,2 Rong-Rong Deng,3 Da-Xiong Xiang1,2 1Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China; 2Hunan Provincial Engineering Research Central of Translational Medical and Innovative Drug, The Second Xiangya Hospital of Central South University, Changsha, Hunan, People’s Republic of China; 3School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, People’s Republic of ChinaCorrespondence: Yong-Yu Yang; Da-Xiong Xiang, Department of Pharmacy, The Second Xiangya Hospital, Central South University, 139#, Renmin Middle Road, Changsha, Hunan, 410011, People’s Republic of China, Tel/Fax +86-731-85292129, Email [email protected]; [email protected]: Ferroptosis plays a crucial role in the occurrence and development of cerebral ischemia-reperfusion (I/R) injury and is regulated by mitogen-activated protein kinase 1/2 (ERK1/2). In China, Naodesheng Pills (NDSP) are prescribed to prevent and treat cerebrosclerosis and stroke. However, the protective effects and mechanism of action of NDSP against cerebral I/R-induced ferroptosis remain unclear. We investigated whether NDSP exerts its protective effects against I/R injury by regulating ferroptosis and aimed to elucidate the underlying mechanisms.Methods: The efficacy of NDSP was evaluated using a Sprague-Dawley rat model of middle cerebral artery occlusion and an in vitro oxygen-glucose deprivation/reoxygenation (OGD/R) model. Brain injury was assessed using 2,3,5-triphenyltetrazolium chloride (TTC), hematoxylin and eosin staining, Nissl staining, and neurological scoring. Western blotting was performed to determine the expression levels of glutathione peroxidase 4 (GPX4), divalent metal-ion transporter-1 (DMT1), solute carrier family 7 member 11 (SLC7A11), and transferrin receptor 1 (TFR1). Iron levels, oxidative stress, and mitochondrial morphology were also evaluated. Network pharmacology was used to assess the associated mechanisms.Results: NDSP (1.08 g/kg) significantly improved cerebral infarct area, cerebral water content, neurological scores, and cerebral tissue damage. Furthermore, NDSP inhibited I/R- and OGD/R-induced ferroptosis, as evidenced by the increased protein expression of GPX4 and SLC7A11, suppression of TFR1 and DMT1, and an overall reduction in oxidative stress and Fe2+ levels. The protective effects of NDSP in vitro were abolished by the GPX4 inhibitor RSL3. Network pharmacology analysis revealed that ERK1/2 was the core target gene and that NDSP reduced the amount of phosphorylated ERK1/2.Conclusion: NDSP exerts its protective effects against I/R by inhibiting cerebral I/R-induced ferroptosis, and this mechanism is associated with the regulation of ferroptosis via the ERK1/2 signaling pathway.Keywords: Naodesheng pills, ferroptosis, cerebral ischemia/reperfusion, glutathione peroxidase 4, mitogen-activated protein kinase 1/

    Interaction of the Coronavirus Infectious Bronchitis Virus Membrane Protein with β-Actin and Its Implication in Virion Assembly and Budding

    Get PDF
    Coronavirus M protein is an essential component of virion and plays pivotal roles in virion assembly, budding and maturation. The M protein is integrated into the viral envelope with three transmembrane domains flanked by a short amino-terminal ectodomain and a large carboxy-terminal endodomain. In this study, we showed co-purification of the M protein from coronavirus infectious bronchitis virus (IBV) with actin. To understand the cellular factors that may be involved in virion assembly, budding and maturation processes, IBV M was used as the bait in a yeast two-hybrid screen, resulting in the identification of β-actin as a potentially interacting partner. This interaction was subsequently confirmed by coimmunoprecipitation and immunofluorescence microscopy in mammalian cells, and mutation of amino acids A159 and K160 on the M protein abolished the interaction. Introduction of the A159-K160 mutation into an infectious IBV clone system blocks the infectivity of the clone, although viral RNA replication and subgenomic mRNA transcription were actively detected. Disruption of actin filaments with cell-permeable agent cytochalasin D at early stages of the infection cycle led to the detection of viral protein synthesis in infected cells but not release of virus particles to the cultured media. However, the same treatment at late stages of the infection cycle did not affect the release of virus particles to the media, suggesting that disruption of the actin filaments might block virion assembly and budding, but not release of the virus particles. This study reveals an essential function of actin in the replication cycle of coronavirus

    Mitochondrial genome nucleotide substitution pattern between domesticated silkmoth, Bombyx mori, and its wild ancestors, Chinese Bombyx mandarina and Japanese Bombyx mandarina

    Get PDF
    Bombyx mori and Bombyx mandarina are morphologically and physiologically similar. In this study, we compared the nucleotide variations in the complete mitochondrial (mt) genomes between the domesticated silkmoth, B. mori, and its wild ancestors, Chinese B. mandarina (ChBm) and Japanese B. mandarina (JaBm). The sequence divergence and transition mutation ratio between B. mori and ChBm are significantly smaller than those observed between B. mori and JaBm. The preference of transition by DNA strands between B. mori and ChBm is consistent with that between B. mori and JaBm, however, the regional variation in nucleotide substitution rate shows a different feature. These results suggest that the ChBm mt genome is not undergoing the same evolutionary process as JaBm, providing evidence for selection on mtDNA. Moreover, investigation of the nucleotide sequence divergence in the A+T-rich region of Bombyx mt genomes also provides evidence for the assumption that the A+T-rich region might not be the fastest evolving region of the mtDNA of insects

    Up-Regulation of Mcl-1 and Bak by Coronavirus Infection of Human, Avian and Animal Cells Modulates Apoptosis and Viral Replication

    Get PDF
    Virus-induced apoptosis and viral mechanisms that regulate this cell death program are key issues in understanding virus-host interactions and viral pathogenesis. Like many other human and animal viruses, coronavirus infection of mammalian cells induces apoptosis. In this study, the global gene expression profiles are first determined in IBV-infected Vero cells at 24 hours post-infection by Affymetrix array, using avian coronavirus infectious bronchitis virus (IBV) as a model system. It reveals an up-regulation at the transcriptional level of both pro-apoptotic Bak and pro-survival myeloid cell leukemia-1 (Mcl-1). These results were further confirmed both in vivo and in vitro, in IBV-infected embryonated chicken eggs, chicken fibroblast cells and mammalian cells at transcriptional and translational levels, respectively. Interestingly, the onset of apoptosis occurred earlier in IBV-infected mammalian cells silenced with short interfering RNA targeting Mcl-1 (siMcl-1), and was delayed in cells silenced with siBak. IBV progeny production and release were increased in infected Mcl-1 knockdown cells compared to similarly infected control cells, while the contrary was observed in infected Bak knockdown cells. Furthermore, IBV infection-induced up-regulation of GADD153 regulated the expression of Mcl-1. Inhibition of the mitogen-activated protein/extracellular signal-regulated kinase (MEK/ERK) and phosphoinositide 3-kinase (PI3K/Akt) signaling pathways by chemical inhibitors and knockdown of GADD153 by siRNA demonstrated the involvement of ER-stress response in regulation of IBV-induced Mcl-1 expression. These results illustrate the sophisticated regulatory strategies evolved by a coronavirus to modulate both virus-induced apoptosis and viral replication during its replication cycle

    Pin1 Modulates the Type 1 Immune Response

    Get PDF
    BACKGROUND/ABSTRACT: Immune responses initiated by T cell receptor (TCR) and costimulatory molecule mediated signaling culminate in maximal cytokine mRNA production and stability. The transcriptional responses to co-stimulatory T cell signalling involve calcineurin and NF-AT, which can be antagonized by interference with the cis-trans peptidyl-prolyl isomerases (PPIase), cyclophilin A and FKBP. Signalling molecules downstream of CD28 which are essential for the stabilization of cytokine mRNAs are largely unknown. METHODOLOGY/PRINCIPAL FINDINGS: We now show that Pin1, a third member of the PPIase family mediates the post-transcriptional regulation of Th1 cytokines by activated T cells. Blockade of Pin1 by pharmacologic or genetic means greatly attenuated IFN-γ, IL-2 and CXCL-10 mRNA stability, accumulation and protein expression after cell activation. In vivo, Pin1 blockade prevented both the acute and chronic rejection of MHC mismatched, orthotopic rat lung transplants by reducing the expression of IFN-γ and CXCL-10. Combined transcriptional and post-transcriptional blockade with cyclosporine A and the Pin1 inhibitor, juglone, was synergistic. CONCLUSIONS/SIGNIFICANCE: These data suggest Pin1 inhibitors should be explored for use as immunosuppressants and employed with available calcineurin inhibitors to reduce toxicity and enhance effectiveness

    Phase Diagram and High Temperature Superconductivity at 65 K in Tuning Carrier Concentration of Single-Layer FeSe Films

    Full text link
    Superconductivity in the cuprate superconductors and the Fe-based superconductors is realized by doping the parent compound with charge carriers, or by application of high pressure, to suppress the antiferromagnetic state. Such a rich phase diagram is important in understanding superconductivity mechanism and other physics in the Cu- and Fe-based high temperature superconductors. In this paper, we report a phase diagram in the single-layer FeSe films grown on SrTiO3 substrate by an annealing procedure to tune the charge carrier concentration over a wide range. A dramatic change of the band structure and Fermi surface is observed, with two distinct phases identified that are competing during the annealing process. Superconductivity with a record high transition temperature (Tc) at ~65 K is realized by optimizing the annealing process. The wide tunability of the system across different phases, and its high-Tc, make the single-layer FeSe film ideal not only to investigate the superconductivity physics and mechanism, but also to study novel quantum phenomena and for potential applications.Comment: 15 pages, 4 figure

    Genetic Structure in the Seabuckthorn Carpenter Moth (Holcocerus hippophaecolus) in China: The Role of Outbreak Events, Geographical and Host Factors

    Get PDF
    Understanding factors responsible for structuring genetic diversity is of fundamental importance in evolutionary biology. The seabuckthorn carpenter moth (Holcocerus hippophaecolus Hua) is a native species throughout the north of China and is considered the main threat to seabuckthorn, Hippophae rhamnoides L. We assessed the influence of outbreaks, environmental factors and host species in shaping the genetic variation and structure of H. hippophaecolus by using Amplified Fragment Length Polymorphism (AFLP) markers. We rejected the hypothesis that outbreak-associated genetic divergence exist, as evidenced by genetic clusters containing a combination of populations from historical outbreak areas, as well as non-outbreak areas. Although a small number of markers (4 of 933 loci) were identified as candidates under selection in response to population densities. H. hippophaecolus also did not follow an isolation-by-distance pattern. We rejected the hypothesis that outbreak and drought events were driving the genetic structure of H. hippophaecolus. Rather, the genetic structure appears to be influenced by various confounding bio-geographical factors. There were detectable genetic differences between H. hippophaecolus occupying different host trees from within the same geographic location. Host-associated genetic divergence should be confirmed by further investigation
    corecore