1,991 research outputs found
Computing a rectilinear shortest path amid splinegons in plane
We reduce the problem of computing a rectilinear shortest path between two
given points s and t in the splinegonal domain \calS to the problem of
computing a rectilinear shortest path between two points in the polygonal
domain. As part of this, we define a polygonal domain \calP from \calS and
transform a rectilinear shortest path computed in \calP to a path between s and
t amid splinegon obstacles in \calS. When \calS comprises of h pairwise
disjoint splinegons with a total of n vertices, excluding the time to compute a
rectilinear shortest path amid polygons in \calP, our reduction algorithm takes
O(n + h \lg{n}) time. For the special case of \calS comprising of concave-in
splinegons, we have devised another algorithm in which the reduction procedure
does not rely on the structures used in the algorithm to compute a rectilinear
shortest path in polygonal domain. As part of these, we have characterized few
of the properties of rectilinear shortest paths amid splinegons which could be
of independent interest
Rock-salt SnS and SnSe: Native Topological Crystalline Insulators
Unlike time-reversal topological insulators, surface metallic states with
Dirac cone dispersion in the recently discovered topological crystalline
insulators (TCIs) are protected by crystal symmetry. To date, TCI behaviors
have been observed in SnTe and the related alloys PbSnSe/Te,
which incorporate heavy elements with large spin-orbit coupling (SOC). Here, by
combining first-principles and {\it ab initio} tight-binding calculations, we
report the formation of a TCI in the relatively lighter rock-salt SnS and SnSe.
This TCI is characterized by an even number of Dirac cones at the high-symmetry
(001), (110) and (111) surfaces, which are protected by the reflection symmetry
with respect to the (10) mirror plane. We find that both SnS and SnSe
have an intrinsically inverted band structure and the SOC is necessary only to
open the bulk band gap. The bulk band gap evolution upon volume expansion
reveals a topological transition from an ambient pressure TCI to a
topologically trivial insulator. Our results indicate that the SOC alone is not
sufficient to drive the topological transition.Comment: 5 pages, 5 figure
Capacitated Center Problems with Two-Sided Bounds and Outliers
In recent years, the capacitated center problems have attracted a lot of
research interest. Given a set of vertices , we want to find a subset of
vertices , called centers, such that the maximum cluster radius is
minimized. Moreover, each center in should satisfy some capacity
constraint, which could be an upper or lower bound on the number of vertices it
can serve. Capacitated -center problems with one-sided bounds (upper or
lower) have been well studied in previous work, and a constant factor
approximation was obtained.
We are the first to study the capacitated center problem with both capacity
lower and upper bounds (with or without outliers). We assume each vertex has a
uniform lower bound and a non-uniform upper bound. For the case of opening
exactly centers, we note that a generalization of a recent LP approach can
achieve constant factor approximation algorithms for our problems. Our main
contribution is a simple combinatorial algorithm for the case where there is no
cardinality constraint on the number of open centers. Our combinatorial
algorithm is simpler and achieves better constant approximation factor compared
to the LP approach
New Limits on the Ultra-high Energy Cosmic Neutrino Flux from the ANITA Experiment
We report initial results of the first flight of the Antarctic Impulsive
Transient Antenna (ANITA-1) 2006-2007 Long Duration Balloon flight, which
searched for evidence of a diffuse flux of cosmic neutrinos above energies of 3
EeV. ANITA-1 flew for 35 days looking for radio impulses due to the Askaryan
effect in neutrino-induced electromagnetic showers within the Antarctic ice
sheets. We report here on our initial analysis, which was performed as a blind
search of the data. No neutrino candidates are seen, with no detected physics
background. We set model-independent limits based on this result. Upper limits
derived from our analysis rule out the highest cosmogenic neutrino models. In a
background horizontal-polarization channel, we also detect six events
consistent with radio impulses from ultra-high energy extensive air showers.Comment: 4 pages, 2 table
Holographic Correlation Functions for Open Strings and Branes
In this paper, we compute holographically the two-point and three-point
functions of giant gravitons with open strings. We consider the maximal giant
graviton in and the string configurations corresponding to the ground
states of Z=0 and Y=0 open spin chain, and the spinning string in AdS
corresponding to the derivative type impurities in Y=0 or Z=0 open spin chain
as well. We treat the D-brane and open string contribution separately and find
the corresponding D3-brane and string configurations in bulk which connect the
composite operators at the AdS boundary. We apply a new prescription to
treat the string state contribution and find agreements for the two-point
functions. For the three-point functions of two giant gravitons with open
strings and one certain half-BPS chiral primary operator, we find that the
D-brane contributions to structure constant are always vanishing and the open
string contribution for the Y=0 ground state is in perfect match with the
prediction in the free field limit.Comment: 25 page
Three-point correlators for giant magnons
Three-point correlation functions in the strong-coupling regime of the
AdS/CFT correspondence can be analyzed within a semiclassical approximation
when two of the vertex operators correspond to heavy string states having large
quantum numbers while the third vertex corresponds to a light state with fixed
charges. We consider the case where the heavy string states are chosen to be
giant magnon solitons with either a single or two different angular momenta,
for various different choices of light string states.Comment: 15 pages. Latex. v2: Misprints corrected. Published versio
Observations of the Askaryan Effect in Ice
We report on the first observations of the Askaryan effect in ice: coherent impulsive radio Cherenkov radiation from the charge asymmetry in an electromagnetic (EM) shower. Such radiation has been observed in silica sand and rock salt, but this is the first direct observation from an EM shower in ice. These measurements are important since the majority of experiments to date that rely on the effect for ultra-high energy neutrino detection are being performed using ice as the target medium. As part of the complete validation process for the Antarctic Impulsive Transient Antenna (ANITA) experiment, we performed an experiment at the Stanford Linear Accelerator Center (SLAC) in June 2006 using a 7.5 metric ton ice target, yielding results fully consistent with theoretical expectations
Rigidly Supersymmetric Gauge Theories on Curved Superspace
In this note we construct rigidly supersymmetric gauged sigma models and
gauge theories on certain Einstein four-manifolds, and discuss constraints on
these theories. In work elsewhere, it was recently shown that on some
nontrivial Einstein four-manifolds such as AdS, N=1 rigidly supersymmetric
sigma models are constrained to have target spaces with exact K\"ahler forms.
Similarly, in gauged sigma models and gauge theories, we find that
supersymmetry imposes constraints on Fayet-Iliopoulos parameters, which have
the effect of enforcing that K\"ahler forms on quotient spaces be exact. We
also discuss general aspects of universality classes of gauged sigma models, as
encoded by stacks, and also discuss affine bundle structures implicit in these
constructions.Comment: 23 pages; references added; more discussion added; v4: typos fixe
Recommended from our members
Efficient propagation of systematic uncertainties from calibration to analysis with the SnowStorm method in IceCube
Efficient treatment of systematic uncertainties that depend on a large number of nuisance parameters is a persistent difficulty in particle physics and astrophysics experiments. Where low-level effects are not amenable to simple parameterization or re-weighting, analyses often rely on discrete simulation sets to quantify the effects of nuisance parameters on key analysis observables. Such methods may become computationally untenable for analyses requiring high statistics Monte Carlo with a large number of nuisance degrees of freedom, especially in cases where these degrees of freedom parameterize the shape of a continuous distribution. In this paper we present a method for treating systematic uncertainties in a computationally efficient and comprehensive manner using a single simulation set with multiple and continuously varied nuisance parameters. This method is demonstrated for the case of the depth-dependent effective dust distribution within the IceCube Neutrino Telescope
Recommended from our members
Design and performance of the first IceAct demonstrator at the South Pole
In this paper we describe the first results of IceAct, a compact imaging air-Cherenkov telescope operating in coincidence with the IceCube Neutrino Observatory (IceCube) at the geographic South Pole. An array of IceAct telescopes (referred to as the IceAct project) is under consideration as part of the IceCube-Gen2 extension to IceCube. Surface detectors in general will be a powerful tool in IceCube-Gen2 for distinguishing astrophysical neutrinos from the dominant backgrounds of cosmic-ray induced atmospheric muons and neutrinos: the IceTop array is already in place as part of IceCube, but has a high energy threshold. Although the duty cycle will be lower for the IceAct telescopes than the present IceTop tanks, the IceAct telescopes may prove to be more effective at lowering the detection threshold for air showers. Additionally, small imaging air-Cherenkov telescopes in combination with IceTop, the deep IceCube detector or other future detector systems might improve measurements of the composition of the cosmic ray energy spectrum. In this paper we present measurements of a first 7-pixel imaging air Cherenkov telescope demonstrator, proving the capability of this technology to measure air showers at the South Pole in coincidence with IceTop and the deep IceCube detector
- …
