26 research outputs found

    Numerical modeling of the tension stiffening in reinforced concrete members via discontinuum models

    Get PDF
    [prova tipográfica]This study presents a numerical investigation on the fracture mechanism of tension stiffening phenomenon in reinforced concrete members. A novel approach using the discrete element method (DEM) is proposed, where three-dimensional randomly generated distinct polyhedral blocks are used, representing concrete and one-dimensional truss elements are utilized, representing steel reinforcements. Thus, an explicit representation of reinforced concrete members is achieved, and the mechanical behavior of the system is solved by integrating the equations of motion for each block using the central difference algorithm. The inter-block interactions are taken into consideration at each contact point with springs and cohesive frictional elements. Once the applied modeling strategy is validated, based on previously published experimental findings, a sensitivity analysis is performed for bond stiffness, cohesion strength, and the number of truss elements. Hence, valuable inferences are made regarding discontinuum analysis of reinforced concrete members, including concrete-steel interaction and their macro behavior. The results demonstrate that the proposed phenomenological modeling strategy successfully captures the concrete-steel interaction and provides an accurate estimation of the macro behavior

    Rigid projectile penetration into a concrete medium: A new model

    Full text link
    A new simplified model to analyze the penetration of a rigid projectile into a concrete thick medium is presented. The concrete medium is modeled by a set of discs, responding in the radial direction under plain strain conditions. A convenient mathematical formulation is derived based on some simplifying assumptions. A major new feature of the present model is that it hybridizes two different analytical and numerical approaches that have been developed by the authors. In the present model, the Riemann problem exact solution is applied to the interaction of the projectile nose tip with the target. It is assumed that when the nose tip meets a new undisturbed disc, loading occurs during its interaction with the concrete, and therefore the unloading branch of the equation of state is not required in the Riemann problem. The other discs that maintain contact with the projectile nose and had been loaded in earlier time steps undergo unloading, and a special approach has been developed to compute their contact stresses. This entirely new formulation has not been proposed earlier. The present model enables calculations of the projectile motion time history (i.e. deceleration, velocity, and depth). Comparison of the present model results with experimental data shows very good agreement. Contrary to many other simplified models, the present approach does not require any empirical constants or any preliminary assumptions concerning the contact pressures acting on the penetrating projectile nose, as other models do. Computer time of less than 1 min is needed for a complete analysis.</jats:p

    Reliability assessment of damaged RC framed structures

    No full text
    corecore