2,056 research outputs found

    Evidence for a quantum phase transition in the electron-doped cuprate Pr2-xCexCuO4+d from Hall and resistivity measurements

    Full text link
    The doping and temperature dependence of the Hall coefficient, RH, and ab-plane resistivity in the normal state down to 350mK is reported for oriented films of the electron-doped high-Tc superconductor Pr2-xCexCuO4+d. The doping dependence of b (r=r0+AT^b) and R_sub_H (at 350 mK) suggest a quantum phase transition at a critical doping near x=0.165.Comment: 11 pages 4 figures Phys. Rev. Lett. 92, 167001 (2004

    Local and macroscopic tunneling spectroscopy of Y(1-x)CaxBa2Cu3O(7-d) films: evidence for a doping dependent is or idxy component in the order parameter

    Full text link
    Tunneling spectroscopy of epitaxial (110) Y1-xCaxBa2Cu3O7-d films reveals a doping dependent transition from pure d(x2-y2) to d(x2-y2)+is or d(x2-y2)+idxy order parameter. The subdominant (is or idxy) component manifests itself in a splitting of the zero bias conductance peak and the appearance of subgap structures. The splitting is seen in the overdoped samples, increases systematically with doping, and is found to be an inherent property of the overdoped films. It was observed in both local tunnel junctions, using scanning tunneling microscopy (STM), and in macroscopic planar junctions, for films prepared by either RF sputtering or laser ablation. The STM measurements exhibit fairly uniform splitting size in [110] oriented areas on the order of 10 nm2 but vary from area to area, indicating some doping inhomogeneity. U and V-shaped gaps were also observed, with good correspondence to the local faceting, a manifestation of the dominant d-wave order parameter

    Use of groundwater lifetime expectancy for the performance assessment of a deep geologic waste repository: 1. Theory, illustrations, and implications

    Full text link
    Long-term solutions for the disposal of toxic wastes usually involve isolation of the wastes in a deep subsurface geologic environment. In the case of spent nuclear fuel, if radionuclide leakage occurs from the engineered barrier, the geological medium represents the ultimate barrier that is relied upon to ensure safety. Consequently, an evaluation of radionuclide travel times from a repository to the biosphere is critically important in a performance assessment analysis. In this study, we develop a travel time framework based on the concept of groundwater lifetime expectancy as a safety indicator. Lifetime expectancy characterizes the time that radionuclides will spend in the subsurface after their release from the repository and prior to discharging into the biosphere. The probability density function of lifetime expectancy is computed throughout the host rock by solving the backward-in-time solute transport adjoint equation subject to a properly posed set of boundary conditions. It can then be used to define optimal repository locations. The risk associated with selected sites can be evaluated by simulating an appropriate contaminant release history. The utility of the method is illustrated by means of analytical and numerical examples, which focus on the effect of fracture networks on the uncertainty of evaluated lifetime expectancy.Comment: 11 pages, 8 figures; Water Resources Research, Vol. 44, 200

    Chiral d+is superconducting state in the two dimensional t-t' Hubbard model

    Full text link
    Applying the recently developed variational approach to Kohn-Luttinger superconductivity to the t-t' Hubbard model in two dimensions, we have found, for sizeable next-nearest neighbor hopping, an electron density controlled quantum phase transition between a d-wave superconducting state close to half filling and an s-wave superconductor at lower electron density. The transition occurs via an intermediate time reversal breaking d+is superconducting phase, which is characterized by nonvanishing chirality and density-current correlation. Our results suggest the possibility of a bulk time reversal symmetry breaking state in overdoped cuprates

    Point contact spectroscopy of the electron-doped cuprate superconductor Pr{2-x}Ce{x}CuO4: The dependence of conductance-voltage spectra on cerium doping, barrier strength and magnetic field

    Full text link
    We present conductance-voltage (G-V) data for point contact junctions between a normal metal and the electron doped cuprate superconductor Pr{2-x}Ce{x}CuO4 (PCCO). We observe a zero bias conductance peak (ZBCP) for the under-doped composition of this cuprate (x=0.13) which is consistent with d-wave pairing symmetry. For optimally-doped (x=0.15) and over-doped (x=0.17) PCCO, we find that the G-V characteristics indicate the presence of an order parameter without nodes. We investigate this further by obtaining point contact spectroscopy data for different barrier strengths and as a function of magnetic field.Comment: 13 pages, 9 figure

    Spin correlations in the electron-doped high-transition-temperature superconductor Nd{2-x}Ce{x}CuO{4+/-delta}

    Full text link
    High-transition-temperature (high-Tc) superconductivity develops near antiferromagnetic phases, and it is possible that magnetic excitations contribute to the superconducting pairing mechanism. To assess the role of antiferromagnetism, it is essential to understand the doping and temperature dependence of the two-dimensional antiferromagnetic spin correlations. The phase diagram is asymmetric with respect to electron and hole doping, and for the comparatively less-studied electron-doped materials, the antiferromagnetic phase extends much further with doping [1, 2] and appears to overlap with the superconducting phase. The archetypical electron-doped compound Nd{2-x}Ce{x}CuO{4\pm\delta} (NCCO) shows bulk superconductivity above x \approx 0.13 [3, 4], while evidence for antiferromagnetic order has been found up to x \approx 0.17 [2, 5, 6]. Here we report inelastic magnetic neutron-scattering measurements that point to the distinct possibility that genuine long-range antiferromagnetism and superconductivity do not coexist. The data reveal a magnetic quantum critical point where superconductivity first appears, consistent with an exotic quantum phase transition between the two phases [7]. We also demonstrate that the pseudogap phenomenon in the electron-doped materials, which is associated with pronounced charge anomalies [8-11], arises from a build-up of spin correlations, in agreement with recent theoretical proposals [12, 13].Comment: 5 pages, 4 figure
    corecore