620 research outputs found
Modelling Backward Travelling Holes in Mixed Traffic Conditions Using an Agent Based Simulation
A spatial queue model in a multi-agent simulation framework is extended by introducing a more realistic behaviour, i.e. backward travelling holes. Space corresponding to a leaving vehicle is not available immediately on the upstream end of the link. Instead, the space travels backward with a constant speed. This space is named a ‘hole’. The resulting dynamics resemble Newell’s simplified kinematic wave model. Furthermore, fundamental diagrams from homogeneous and heterogeneous traffic simulations are presented. The sensitivity of the presented approach is tested with the help of flow density contours
Single-machine scheduling with stepwise tardiness costs and release times
We study a scheduling problem that belongs to the yard operations component of the railroad planning problems, namely the hump sequencing problem. The scheduling problem is characterized as a single-machine problem with stepwise tardiness cost objectives. This is a new scheduling criterion which is also relevant in the context of traditional machine scheduling problems. We produce complexity results that characterize some cases of the problem as pseudo-polynomially solvable. For the difficult-to-solve cases of the problem, we develop mathematical programming formulations, and propose heuristic algorithms. We test the formulations and heuristic algorithms on randomly generated single-machine scheduling problems and real-life datasets for the hump sequencing problem. Our experiments show promising results for both sets of problems
Design Analysis of Corridors-in-the-Sky
Corridors-in-the-sky or tubes is one of new concepts in dynamic airspace configuration. It accommodates high density traffic, which has similar trajectories. Less air traffic controllers workload is expected than classic airspaces, thus, corridors-in-the-sky may increase national airspace capacity and reduce flight delays. To design corridors-in-the-sky, besides identifying their locations, their utilization, altitudes, and impacts on remaining system need to be analyzed. This paper chooses one tube candidate and presents analyses of spatial and temporal utilization of the tube, the impact on the remaining traffic, and the potential benefit caused by off-loading the traffic from underlying sectors. Fundamental issues regarding to the benefits have been also clarified. Methods developed to assist the analysis are described. Analysis results suggest dynamic tubes in terms of varied utilizations during different time periods. And it is found that combined lane options would be a good choice to lower the impact on non-tube users. Finally, it shows significant reduction of peak aircraft count in underlying sectors with only one tube enabled
Characteristics of Vehicular Traffic Flow at a Roundabout
We construct a stochastic cellular automata model for the description of
vehicular traffic at a roundabout designed at the intersection of two
perpendicular streets. The vehicular traffic is controlled by a self-organized
scheme in which traffic lights are absent. This controlling method incorporates
a yield-at-entry strategy for the approaching vehicles to the circulating
traffic flow in the roundabout. Vehicular dynamics is simulated within the
framework of the probabilistic cellular automata and the delay experienced by
the traffic at each individual street is evaluated for specified time
intervals. We discuss the impact of the geometrical properties of the
roundabout on the total delay. We compare our results with traffic-light
signalisation schemes, and obtain the critical traffic volume over which the
intersection is optimally controlled through traffic light signalisation
schemes.Comment: 10 pages, 17 eps figures. arXiv admin note: text overlap with
arXiv:cond-mat/040107
A Vehicular Traffic Flow Model Based on a Stochastic Acceleration Process
A new vehicular traffic flow model based on a stochastic jump process in
vehicle acceleration and braking is introduced. It is based on a master
equation for the single car probability density in space, velocity and
acceleration with an additional vehicular chaos assumption and is derived via a
Markovian ansatz for car pairs. This equation is analyzed using simple driver
interaction models in the spatial homogeneous case. Velocity distributions in
stochastic equilibrium, together with the car density dependence of their
moments, i.e. mean velocity and scattering and the fundamental diagram are
presented.Comment: 27 pages, 6 figure
Physics, Stability and Dynamics of Supply Networks
We show how to treat supply networks as physical transport problems governed
by balance equations and equations for the adaptation of production speeds.
Although the non-linear behaviour is different, the linearized set of coupled
differential equations is formally related to those of mechanical or electrical
oscillator networks. Supply networks possess interesting new features due to
their complex topology and directed links. We derive analytical conditions for
absolute and convective instabilities. The empirically observed "bull-whip
effect" in supply chains is explained as a form of convective instability based
on resonance effects. Moreover, it is generalized to arbitrary supply networks.
Their related eigenvalues are usually complex, depending on the network
structure (even without loops). Therefore, their generic behavior is
characterized by oscillations. We also show that regular distribution networks
possess two negative eigenvalues only, but perturbations generate a spectrum of
complex eigenvalues.Comment: For related work see http://www.helbing.or
Fuzzy cellular model for on-line traffic simulation
This paper introduces a fuzzy cellular model of road traffic that was
intended for on-line applications in traffic control. The presented model uses
fuzzy sets theory to deal with uncertainty of both input data and simulation
results. Vehicles are modelled individually, thus various classes of them can
be taken into consideration. In the proposed approach, all parameters of
vehicles are described by means of fuzzy numbers. The model was implemented in
a simulation of vehicles queue discharge process. Changes of the queue length
were analysed in this experiment and compared to the results of NaSch cellular
automata model.Comment: The original publication is available at http://www.springerlink.co
Derivation, Properties, and Simulation of a Gas-Kinetic-Based, Non-Local Traffic Model
We derive macroscopic traffic equations from specific gas-kinetic equations,
dropping some of the assumptions and approximations made in previous papers.
The resulting partial differential equations for the vehicle density and
average velocity contain a non-local interaction term which is very favorable
for a fast and robust numerical integration, so that several thousand freeway
kilometers can be simulated in real-time. The model parameters can be easily
calibrated by means of empirical data. They are directly related to the
quantities characterizing individual driver-vehicle behavior, and their optimal
values have the expected order of magnitude. Therefore, they allow to
investigate the influences of varying street and weather conditions or freeway
control measures. Simulation results for realistic model parameters are in good
agreement with the diverse non-linear dynamical phenomena observed in freeway
traffic.Comment: For related work see
http://www.theo2.physik.uni-stuttgart.de/helbing.html and
http://www.theo2.physik.uni-stuttgart.de/treiber.htm
Congested Traffic States in Empirical Observations and Microscopic Simulations
We present data from several German freeways showing different kinds of
congested traffic forming near road inhomogeneities, specifically lane
closings, intersections, or uphill gradients. The states are localized or
extended, homogeneous or oscillating. Combined states are observed as well,
like the coexistence of moving localized clusters and clusters pinned at road
inhomogeneities, or regions of oscillating congested traffic upstream of nearly
homogeneous congested traffic. The experimental findings are consistent with a
recently proposed theoretical phase diagram for traffic near on-ramps [D.
Helbing, A. Hennecke, and M. Treiber, Phys. Rev. Lett. {\bf 82}, 4360 (1999)].
We simulate these situations with a novel continuous microscopic single-lane
model, the ``intelligent driver model'' (IDM), using the empirical boundary
conditions. All observations, including the coexistence of states, are
qualitatively reproduced by describing inhomogeneities with local variations of
one model parameter.
We show that the results of the microscopic model can be understood by
formulating the theoretical phase diagram for bottlenecks in a more general
way. In particular, a local drop of the road capacity induced by parameter
variations has practically the same effect as an on-ramp.Comment: Now published in Phys. Rev. E. Minor changes suggested by a referee
are incorporated; full bibliographic info added. For related work see
http://www.mtreiber.de/ and http://www.helbing.org
Optimised Traffic Flow at a Single Intersection: Traffic Responsive signalisation
We propose a stochastic model for the intersection of two urban streets. The
vehicular traffic at the intersection is controlled by a set of traffic lights
which can be operated subject to fix-time as well as traffic adaptive schemes.
Vehicular dynamics is simulated within the framework of the probabilistic
cellular automata and the delay experienced by the traffic at each individual
street is evaluated for specified time intervals. Minimising the total delay of
both streets gives rise to the optimum signalisation of traffic lights. We
propose some traffic responsive signalisation algorithms which are based on the
concept of cut-off queue length and cut-off density.Comment: 10 pages, 11 eps figs, to appear in J. Phys.
- …
