541 research outputs found
HUWE1 E3 ligase promotes PINK1/PARKINindependent mitophagy by regulating AMBRA1 activation via IKKa
The selective removal of undesired or damaged mitochondria by autophagy, known as mitophagy, is crucial for cellular homoeostasis, and prevents tumour diffusion, neurodegeneration and ageing. The pro-autophagic molecule AMBRA1 (autophagy/beclin-1 regulator-1) has been defined as a novel regulator of mitophagy in both PINK1/PARKIN-dependent and -independent systems. Here, we identified the E3 ubiquitin ligase HUWE1 as a key inducing factor in AMBRA1-mediated mitophagy, a process that takes place independently of the main mitophagy receptors. Furthermore, we show that mitophagy function of AMBRA1 is post-translationally controlled, upon HUWE1 activity, by a positive phosphorylation on its serine 1014. This modification is mediated by the IKKα kinase and induces structural changes in AMBRA1, thus promoting its interaction with LC3/GABARAP (mATG8) proteins and its mitophagic activity. Altogether, these results demonstrate that AMBRA1 regulates mitophagy through a novel pathway, in which HUWE1 and IKKα are key factors, shedding new lights on the regulation of mitochondrial quality control and homoeostasis in mammalian cells
HighwayLLM: Decision-Making and Navigation in Highway Driving with RL-Informed Language Model
Autonomous driving is a complex task which requires advanced decision making
and control algorithms. Understanding the rationale behind the autonomous
vehicles' decision is crucial to ensure their safe and effective operation on
highway driving. This study presents a novel approach, HighwayLLM, which
harnesses the reasoning capabilities of large language models (LLMs) to predict
the future waypoints for ego-vehicle's navigation. Our approach also utilizes a
pre-trained Reinforcement Learning (RL) model to serve as a high-level planner,
making decisions on appropriate meta-level actions. The HighwayLLM combines the
output from the RL model and the current state information to make safe,
collision-free, and explainable predictions for the next states, thereby
constructing a trajectory for the ego-vehicle. Subsequently, a PID-based
controller guides the vehicle to the waypoints predicted by the LLM agent. This
integration of LLM with RL and PID enhances the decision-making process and
provides interpretability for highway autonomous driving
Desarrollo de una síntesis de cristales porosos magnéticos para la extracción en fase sólida de arsénico
En este proyecto de investigación se presenta un método para la síntesis de nanocristales porosos magnéticos (ZIF-8@Fe3O4), para la extracción de contaminantes ambientales. Dicha síntesis se basa en el encapsulamiento de nanopartículas de Fe3O4 en los cristales de la red metalo-orgánica ZIF-8, basada en la coordinación de Zn (II) con 2-metilimidazol. En la síntesis propuesta se hace uso del ligando monodentado butilamina con el fin de promover la protonación del 2-metilimidazol, acelerando el crecimiento cristalino.
Con el fin de evaluar la síntesis propuesta se realizó un diseño de experimentos factorial de dos niveles (DOE), en el cual se propuso modificar las relaciones estequiométricas entre los precursores y evaluar el impacto en las características físicas de interés del cristal (área superficial y distribución de las partículas magnéticas), así como, en el rendimiento de la síntesis y en el desempeño de los nanocristales como absorbentes de arsénico en medio acuoso.
Las muestras obtenidas en el experimento factorial fueron caracterizadas utilizando las técnicas de difracción de rayos X en polvo, microscopia electrónica de barrido (SEM), adsorción-desorción de nitrógeno y termogravimetría.
El encapsulamiento de las nanopartículas de Fe3O4 fue exitoso y el análisis SEM permitió observar su presencia y distribución en la superficie del cristal. Todas las muestras obtenidas presentaron un patrón difracción de rayos X comparable con el reportado en la literatura y un área superficial igualmente comparable con la publicada (entre 300 y 600 m2 g-1).Las muestras obtenidas fueron evaluadas como adsorbentes de arsénico en solución acuosa, pudiéndose apreciar una diferencia significativa entre muestras cuando el tiempo de contacto era de 1 h y la concentración de arsénico de 2.5 μg L-1. Aumentando el tiempo
de contacto a 8 h, los resultados entre muestras resultaron ser muy similares rondando, en todos los casos, el 100% de adsorción.
Como herramienta para la determinación de la capacidad adsorción de arsénico por parte de las muestras evaluadas, se desarrolló un método espectrofotométrico automatizado. El método desarrollado se basó en la técnica de espectrofotometría de fluorescencia atómica la cual se acoplo a la técnica de generación de hidruros y ésta a su vez a un sistema de análisis por inyección de flujo multijeringa (MSFIA). Con este sistema se obtuvo un límite de detección de 0.20 μg L-1 y un rango lineal de 0-20 μg L-1 para la determinación de As, así como una frecuencia de análisis 12 h-1. Las características analíticas obtenidas fueron adecuadas para poder analizar todas las muestras evaluadas en un tiempo razonable, con una sensibilidad y precisión adecuadas
The pharmacological regulation of cellular mitophagy
Small molecules are pharmacological tools of considerable value for dissecting complex biological processes and identifying potential therapeutic interventions. Recently, the cellular quality-control process of mitophagy has attracted considerable research interest; however, the limited availability of suitable chemical probes has restricted our understanding of the molecular mechanisms involved. Current approaches to initiate mitophagy include acute dissipation of the mitochondrial membrane potential (ΔΨm) by mitochondrial uncouplers (for example, FCCP/CCCP) and the use of antimycin A and oligomycin to impair respiration. Both approaches impair mitochondrial homeostasis and therefore limit the scope for dissection of subtle, bioenergy-related regulatory phenomena. Recently, novel mitophagy activators acting independently of the respiration collapse have been reported, offering new opportunities to understand the process and potential for therapeutic exploitation. We have summarized the current status of mitophagy modulators and analyzed the available chemical tools, commenting on their advantages, limitations and current applications
Open labware: 3-D printing your own lab equipment
The introduction of affordable, consumer-oriented 3-D printers is a milestone in the current “maker movement,” which has been heralded as the next industrial revolution. Combined with free and open sharing of detailed design blueprints and accessible development tools, rapid prototypes of complex products can now be assembled in one’s own garage—a game-changer reminiscent of the early days of personal computing. At the same time, 3-D printing has also allowed the scientific and engineering community to build the “little things” that help a lab get up and running much faster and easier than ever before
Synaptic dysfunction, memory deficits and hippocampal atrophy due to ablation of mitochondrial fission in adult forebrain neurons
Well-balanced mitochondrial fission and fusion processes are essential for nervous system development. Loss of function of the main mitochondrial fission mediator, dynamin-related protein 1 (Drp1), is lethal early during embryonic development or around birth, but the role of mitochondrial fission in adult neurons remains unclear. Here we show that inducible Drp1 ablation in neurons of the adult mouse forebrain results in progressive, neuronal subtype-specific alterations of mitochondrial morphology in the hippocampus that are marginally responsive to antioxidant treatment. Furthermore, DRP1 loss affects synaptic transmission and memory function. Although these changes culminate in hippocampal atrophy, they are not sufficient to cause neuronal cell death within 10 weeks of genetic Drp1 ablation. Collectively, our in vivo observations clarify the role of mitochondrial fission in neurons, demonstrating that Drp1 ablation in adult forebrain neurons compromises critical neuronal functions without causing overt neurodegeneration
G protein-coupled receptor kinase 2 regulates mitochondrial bioenergetics and impairs myostatin-mediated autophagy in muscle cells
G protein-coupled receptor kinase 2 (GRK2) is an important protein involved in β-adrenergic receptor desensitization. In addition, studies have shown GRK2 can modulate different metabolic processes in the cell. For instance, GRK2 has been recently shown to promote mitochondrial biogenesis and increase ATP production. However, the role of GRK2 in skeletal muscle and the signaling mechanisms that regulate GRK2 remain poorly understood. Myostatin is a well-known myokine that has been shown to impair mitochondria function. Here, we have assessed the role of myostatin in regulating GRK2 and the subsequent downstream effect of myostatin regulation of GRK2 on mitochondrial respiration in skeletal muscle. Myostatin treatment promoted the loss of GRK2 protein in myoblasts and myotubes in a time- and dose-dependent manner, which we suggest was through enhanced ubiquitin-mediated protein loss, as treatment with proteasome inhibitors partially rescued myostatin-mediated loss of GRK2 protein. To evaluate the effects of GRK2 on mitochondrial respiration, we generated stable myoblast lines that overexpress GRK2. Stable overexpression of GRK2 resulted in increased mitochondrial content and enhanced mitochondrial/oxidative respiration. Interestingly, although overexpression of GRK2 was unable to prevent myostatin-mediated impairment of mitochondrial respiratory function, elevated levels of GRK2 blocked the increased autophagic flux observed following treatment with myostatin. Overall, our data suggest a novel role for GRK2 in regulating mitochondria mass and mitochondrial respiration in skeletal muscle
Mechanism of Neuroprotective Mitochondrial Remodeling by PKA/AKAP1
The mitochondrial signaling complex PKA/AKAP1 protects neurons against
mitochondrial fragmentation and cell death by phosphorylating and inactivating
the mitochondrial fission enzyme Drp1
Nutritional modulation of the intestinal microbiota: future opportunities for the prevention and treatment of neuroimmune and neuroinflammatory disease
© 2018 Elsevier Inc. The gut-brain-axis refers to the bidirectional communication between the enteric nervous system and the central nervous system. Mounting evidence supports the premise that the intestinal microbiota plays a pivotal role in its function and has led to the more common and perhaps more accurate term gut-microbiota-brain axis. Numerous studies have identified associations between an altered microbiome and neuroimmune and neuroinflammatory diseases. In most cases, it is unknown if these associations are cause or effect; notwithstanding, maintaining or restoring homeostasis of the microbiota may represent future opportunities when treating or preventing these diseases. In recent years, several studies have identified the diet as a primary contributing factor in shaping the composition of the gut microbiota, and in turn, the mucosal and systemic immune systems. In this review, we will discuss the potential opportunities and challenges with respect to modifying and shaping the microbiota through diet and nutrition in order to treat or prevent neuroimmune and neuroinflammatory disease
Structural determinants of PINK1 topology and dual subcellular distribution
<p>Abstract</p> <p>Background</p> <p>PINK1 is a mitochondria-targeted kinase that constitutively localizes to both the mitochondria and the cytosol. The mechanism of how PINK1 achieves cytosolic localization following mitochondrial processing remains unknown. Understanding PINK1 subcellular localization will give us insights into PINK1 functions and how mutations in PINK1 lead to Parkinson's disease. We asked how the mitochondrial localization signal, the transmembrane domain, and the kinase domain participate in PINK1 localization.</p> <p>Results</p> <p>We confirmed that PINK1 mitochondrial targeting signal is responsible for mitochondrial localization. Once inside the mitochondria, we found that both PINK1 transmembrane and kinase domain are important for membrane tethering and cytosolic-facing topology. We also showed that PINK1 dual subcellular distribution requires both Hsp90 interaction with the kinase domain and the proteolysis at a cleavage site downstream of the transmembrane domain because removal of this cleavage site completely abolished cytosolic PINK1. In addition, the disruption of the Hsp90-PINK1 interaction increased mitochondrial PINK1 level.</p> <p>Conclusion</p> <p>Together, we believe that once PINK1 enters the mitochondria, PINK1 adopts a tethered topology because the transmembrane domain and the kinase domain prevent PINK1 forward movement into the mitochondria. Subsequent proteolysis downstream of the transmembrane domain then releases PINK1 for retrograde movement while PINK1 kinase domain interacts with Hsp90 chaperone. The significance of this dual localization could mean that PINK1 has compartmental-specific functions.</p
- …
