17,548 research outputs found
Measured acoustic properties of variable and low density bulk absorbers
Experimental data were taken to determine the acoustic absorbing properties of uniform low density and layered variable density samples using a bulk absober with a perforated plate facing to hold the material in place. In the layered variable density case, the bulk absorber was packed such that the lowest density layer began at the surface of the sample and progressed to higher density layers deeper inside. The samples were placed in a rectangular duct and measurements were taken using the two microphone method. The data were used to calculate specific acoustic impedances and normal incidence absorption coefficients. Results showed that for uniform density samples the absorption coefficient at low frequencies decreased with increasing density and resonances occurred in the absorption coefficient curve at lower densities. These results were confirmed by a model for uniform density bulk absorbers. Results from layered variable density samples showed that low frequency absorption was the highest when the lowest density possible was packed in the first layer near the exposed surface. The layers of increasing density within the sample had the effect of damping the resonances
Incorporating Side Information in Probabilistic Matrix Factorization with Gaussian Processes
Probabilistic matrix factorization (PMF) is a powerful method for modeling
data associated with pairwise relationships, finding use in collaborative
filtering, computational biology, and document analysis, among other areas. In
many domains, there is additional information that can assist in prediction.
For example, when modeling movie ratings, we might know when the rating
occurred, where the user lives, or what actors appear in the movie. It is
difficult, however, to incorporate this side information into the PMF model. We
propose a framework for incorporating side information by coupling together
multiple PMF problems via Gaussian process priors. We replace scalar latent
features with functions that vary over the space of side information. The GP
priors on these functions require them to vary smoothly and share information.
We successfully use this new method to predict the scores of professional
basketball games, where side information about the venue and date of the game
are relevant for the outcome.Comment: 18 pages, 4 figures, Submitted to UAI 201
Effects of fiber motion on the acoustic behavior of an anisotropic, flexible fibrous material
The acoustic behavior of a flexible fibrous material was studied experimentally. The material consisted of cylindrically shaped fibers arranged in a batting with the fibers primarily aligned parallel to the face of the batting. This type of material was considered anisotropic, with the acoustic propagation constant depending on whether the dirction of sound propagation was parallel or normal to the fiber arrangement. Normal incidence sound absorption measurements were taken for both fiber orientations over the frequency range 140 to 1500 Hz and with bulk densities ranging from 4.6 to 67 kg/cu m. When the sound propagated in a direction normal to the fiber alignment, the measured sound absorption showed the occurrence of a strong resonance, which increased absorption above that attributed to viscous and thermal effects. When the sound propagated in a direction parallel to the fiber alignment, indications of strong resonances in the data were not present. The resonance in the data for fibers normal to the direction of sound propagation is attributed to fiber motion. An analytical model was developed for the acoustic behavior of the material displaying the same fiber motion characteristics shown in the measurements
- …
