31 research outputs found

    Single production of the top partners at high energy colliders

    Full text link
    The left-right twin HiggsHiggs (LRTHLRTH) model is a concrete realization of the twin HiggsHiggs mechanism, which predicts the existence of the top partner TT. In this paper, we consider production of TT associated with the top quark tt at the high energy linear e+ee^{+}e^{-} collider (ILCILC) and the LHCLHC experiments, and its single production in future linac-ring type epep collider experiment. To compare our results with those of the littlest HiggsHiggs model with TT-parity, we also estimate production of the TT-even top partner T+T_{+} via the corresponding processes in these high energy collider experiments. A simply phenomenological analysis is also given.Comment: 21 pages, 10 figures; to be published in Nucl. Phys.

    Core species and interactions prominent in fish-associated microbiome dynamics

    Get PDF
    魚の健康において鍵となる「コア微生物叢」 --ウナギ養殖水槽内の細菌叢動態--. 京都大学プレスリリース. 2023-03-30.[Background] In aquatic ecosystems, the health and performance of fish depend greatly on the dynamics of microbial community structure in the background environment. Nonetheless, finding microbes with profound impacts on fish’s performance out of thousands of candidate species remains a major challenge. [Methods] We examined whether time-series analyses of microbial population dynamics could illuminate core components and structure of fish-associated microbiomes in the background (environmental) water. By targeting eel-aquaculture-tank microbiomes as model systems, we reconstructed the population dynamics of the 9605 bacterial and 303 archaeal species/strains across 128 days. [Results] Due to the remarkable increase/decrease of constituent microbial population densities, the taxonomic compositions of the microbiome changed drastically through time. We then found that some specific microbial taxa showed a positive relationship with eels’ activity levels even after excluding confounding effects of environmental parameters (pH and dissolved oxygen level) on population dynamics. In particular, a vitamin-B12-producing bacteria, Cetobacterium somerae, consistently showed strong positive associations with eels’ activity levels across the replicate time series of the five aquaculture tanks analyzed. Network theoretical and metabolic modeling analyses further suggested that the highlighted bacterium and some other closely-associated bacteria formed “core microbiomes” with potentially positive impacts on eels. [Conclusions] Overall, these results suggest that the integration of microbiology, ecological theory, and network science allows us to explore core species and interactions embedded within complex dynamics of fish-associated microbiomes

    Parameter Space Design Method of PID Controller for Robust Sensitivity Minimization Problem

    Full text link

    Investigating on Effect of Particle Form and Mixing Method on applied Properties Green Composite

    No full text
    Nowadays Paulownia as the fast growing species has noticed for wood industry in the world. In this research, Paulownia fortuni planted in Shaskolateh forest of Gorgan were studied. Two particle form, flour (60 mesh size) and fiber (RMP, L/D= 21/54) were prepared. 60 percent of this material with 37% of HDPE , 3% of MAPE were blended separately. Part from this material by internal mixer and other part by extruder blended. Output was prepared like pellets. Samples were prepared in dimensions of 30cm×30cm×1cm, and nominal density 1 g/cm3 by hot press. The mechanical testing of the panels (flexural, hardness, unnotched impact strength) and the physical testing of the panels (thickness swelling and water absorption after 2 & 24 hours immersion in water) were measured. The result showed that modulus of rupture, hardness, unnotched impact strength of composite made of fiber-PE were lower than composite made of flour-PE. Flexural elastic modulus of composite made of fiber-PE were higher than flour-PE. Water absorption and thickness swelling of composite made of fiber-PE were higher than flour-PE. Also physical and mechanical properties of composites blended by internal mixer improved in compared composites blended by extruder. Physical and mechanical properties of composite made of fiber-PE blended by internal mixer improved in compared composite made of fiber-PE blended by extruder

    Accuracy Verification of 4D-CT Analysis of Knee Joint Movements: A Pilot Study Using a Knee Joint Model and Motion-capture System

    No full text
    Abstract BackgroundFour-dimensional CT(4D-CT) is an advanced imaging method with the ability to acquire kinematic and three-dimensional morphological information. Although its use for analysis of the six degrees of freedom in the knee is expected, its accuracy has not been reported. This study aimed to use the optical motion-capture method to verify the accuracy of 4D-CT analysis of knee joint movement.MethodsOne static CT and three 4D-CT examinations of the knee joint model were obtained. The knee joint model was passively moved in the CT gantry during 4D-CT acquisitions. 4D-CT and static CT examinations were matched to perform 3D-3D registration. An optical motion-capture system recorded the position-posture of the knee joint model simultaneously with the 4D-CT acquisitions. These results were used as the correct answer value, the position-posture measurements using 4D-CT were compared to these values, and the accuracy of the 4D-CT analysis of knee joint movements was quantitatively assessed. ResultsThe position-posture measurements obtained from 4D-CT showed similar tendency to those obtained from the motion-capture system. In the femorotibial joint, the difference in the spatial orientation between the two measurements was 0.7 mm in the X direction, 0.9 mm in the Y direction, and 2.8 mm in the Z direction. The difference in angle was 1.9° in the varus/valgus direction, 1.1° in the internal/external rotation, and 1.8° in extension/flexion. In the patellofemoral joint, the difference between the two measurements was 0.9 mm in the X direction, 1.3 mm in the Y direction, and 1.2 mm in the Z direction. The difference in angle was 0.9° for varus/valgus, 1.1° for internal/external rotation, and 1.3° for extension / flexion. Conclusions4D-CT with 3D-3D registration could record the position-posture of knee joint movements with an error of less than 3 mm and less than 2° when compared with the highly accurate motion-capture system. Knee joint movement analysis using 4D-CT with 3D-3D registration showed excellent accuracy for in vivo applications.</jats:p

    Core species and interactions prominent in fish-associated microbiome dynamics

    No full text
    Abstract Background In aquatic ecosystems, the health and performance of fish depend greatly on the dynamics of microbial community structure in the background environment. Nonetheless, finding microbes with profound impacts on fish’s performance out of thousands of candidate species remains a major challenge. Methods We examined whether time-series analyses of microbial population dynamics could illuminate core components and structure of fish-associated microbiomes in the background (environmental) water. By targeting eel-aquaculture-tank microbiomes as model systems, we reconstructed the population dynamics of the 9605 bacterial and 303 archaeal species/strains across 128 days. Results Due to the remarkable increase/decrease of constituent microbial population densities, the taxonomic compositions of the microbiome changed drastically through time. We then found that some specific microbial taxa showed a positive relationship with eels’ activity levels even after excluding confounding effects of environmental parameters (pH and dissolved oxygen level) on population dynamics. In particular, a vitamin-B12-producing bacteria, Cetobacterium somerae, consistently showed strong positive associations with eels’ activity levels across the replicate time series of the five aquaculture tanks analyzed. Network theoretical and metabolic modeling analyses further suggested that the highlighted bacterium and some other closely-associated bacteria formed “core microbiomes” with potentially positive impacts on eels. Conclusions Overall, these results suggest that the integration of microbiology, ecological theory, and network science allows us to explore core species and interactions embedded within complex dynamics of fish-associated microbiomes.  </jats:sec
    corecore