168 research outputs found

    Real-time Evaluation of Vision-based Navigation for Autonomous Landing of a Rotorcraft Unmanned Aerial Vehicle in a Non-cooperative Environment

    Get PDF
    Landing a rotorcraft unmanned aerial vehicle (RUAV) without human supervision is a capability that would significantly broaden the usefulness of UAVs. The benefits are even greater if the functionality is expanded to involve landing sites with unknown terrain and a lack of GPS or other positioning aids. Examples of these types of non-cooperative environments could range from remote mountainous regions to an urban building rooftop or a cluttered parking lot. The research of this thesis builds upon an approach that was initiated at NASA Ames Research Center to advance technology in the landing phase of RUAV operations. The approach consists of applying JPL\u27s binocular stereo ranging algorithm to identify a landing site free of hazardous terrain. JPL\u27s monocular feature tracking algorithm is then applied to keep track of the chosen landing point in subsequent camera images. Finally, a position-estimation routine makes use of the tracking output to estimate the rotorcraft\u27s position relative to the landing point. These position estimates make it possible to guide the rotorcraft toward, and land at, the safe landing site. This methodology is implemented in simulation within the context of a fully-autonomous RUAV mission. Performance metrics are defined and tests are carried out in simulation to independently evaluate the performance of each algorithm. The stereo ranging algorithm is shown to successfully identify a safe landing point on average 70%-90% of the time in a cluttered parking lot scenario. The tracking algorithm is demonstrated to be robust under extreme operating conditions, and lead to a position-estimation error of less than 1 meter during a 2-minute hover at 12 meters above the ground. Preliminary tests with actual flight hardware are done to confirm the validity of these results, and to prepare for demonstrations and testing in flight

    Mechanistic insight into the pathology of polyalanine expansion disorders revealed by a mouse model for x linked hypopituitarism

    Get PDF
    Extent: 9 p.Polyalanine expansions in transcription factors have been associated with eight distinct congenital human diseases. It is thought that in each case the polyalanine expansion causes misfolding of the protein that abrogates protein function. Misfolded proteins form aggregates when expressed in vitro; however, it is less clear whether aggregation is of relevance to these diseases in vivo. To investigate this issue, we used targeted mutagenesis of embryonic stem (ES) cells to generate mice with a polyalanine expansion mutation in Sox3 (Sox3-26ala) that is associated with X-linked Hypopituitarism (XH) in humans. By investigating both ES cells and chimeric mice, we show that endogenous polyalanine expanded SOX3 does not form protein aggregates in vivo but rather is present at dramatically reduced levels within the nucleus of mutant cells. Importantly, the residual mutant protein of chimeric embryos is able to rescue a block in gastrulation but is not sufficient for normal development of the hypothalamus, a region that is functionally compromised in Sox3 null embryos and individuals with XH. Together, these data provide the first definitive example of a disease-relevant PA mutant protein that is both nuclear and functional, thereby manifesting as a partial loss-of-function allele.James Hughes Sandra Piltz, Nicholas Rogers, Dale McAninch, Lynn Rowley and Paul Thoma

    Graphene Oxide Bulk Modified Screen-Printed Electrodes Provide Beneficial Electroanalytical Sensing Capabilities

    Get PDF
    We demonstrate a facile methodology for the mass production of graphene oxide (GO) bulk modified screen-printed electrodes (GO-SPEs) that are economical, highly reproducible and provide analytically useful outputs. Through fabricating GO-SPEs with varying percentage mass incorporations (2.5, 5, 7.5 and 10%) of GO, an electrocatalytic effect towards the chosen electroanalytical probes is observed, that increases with greater GO incorporated compared to bare/ graphite SPEs. The optimum mass ratio of 10% GO to 90% carbon ink displays an electroanalytical signal towards dopamine (DA) and uric acid (UA), which is ca. ×10 greater in magnitude than that achievable at a bare/unmodified graphite SPE. Furthermore, 10% GO-SPEs exhibit a competitively low limit of detection (3σ) towards DA at ca. 81 nM, which is superior to that of a bare/unmodified graphite SPE at ca. 780 nM. The improved analytical response is attributed to the large number of oxygenated species inhabiting the edge and defect sites of the GO nanosheets, which are available to exhibit electrocatalytic responses towards inner-sphere electrochemical analytes. Our reported methodology is simple, scalable, and cost effective for the fabrication of GO-SPEs, that display highly competitive LODs, and is of significant interest for use in commercial and medicinal application

    Quantitative MRI provides markers of intra-, inter-regional, and age-related differences in young adult cortical microstructure

    Get PDF
    Measuring the structural composition of the cortex is critical to understanding typical development, yet few investigations in humans have charted markers in vivo that are sensitive to tissue microstructural attributes. Here, we used a well-validated quantitative MR protocol to measure four parameters (R1, MT, R2*, PD*) that differ in their sensitivity to facets of the tissue microstructural environment (R1, MT: myelin, macromolecular content; R2*: myelin, paramagnetic ions, i.e., iron; PD*: free water content). Mapping these parameters across cortical regions in a young adult cohort (18–39 years, N = 93) revealed expected patterns of increased macromolecular content as well as reduced tissue water content in primary and primary adjacent cortical regions. Mapping across cortical depth within regions showed decreased expression of myelin and related processes – but increased tissue water content – when progressing from the grey/white to the grey/pial boundary, in all regions. Charting developmental change in cortical microstructure cross-sectionally, we found that parameters with sensitivity to tissue myelin (R1 & MT) showed linear increases with age across frontal and parietal cortex (change 0.5–1.0% per year). Overlap of robust age effects for both parameters emerged in left inferior frontal, right parietal and bilateral pre-central regions. Our findings afford an improved understanding of ontogeny in early adulthood and offer normative quantitative MR data for inter- and intra-cortical composition, which may be used as benchmarks in further studies

    2D nanosheet molybdenum disulphide (MoS2) modified electrodes explored towards the hydrogen evolution reaction

    Get PDF
    We explore the use of two-dimensional (2D) MoS2 nanosheets as an electro-catalyst for the Hydrogen Evolution Reaction (HER). Using four commonly employed commercially available carbon based electrode support materials, namely edge plane pyrolytic graphite (EPPG), glassy carbon (GC), boron-doped diamond (BDD) and screen-printed graphite electrodes (SPE), we critically evaluate the reported electro-catalytic performance of unmodified and MoS2 modified electrodes towards the HER. Surprisingly, current literature focuses almost exclusively on the use of GC as an underling support electrode upon which HER materials are immobilised. 2D MoS2 nanosheet modified electrodes are found to exhibit a coverage dependant electrocatalytic effect towards the HER. Modification of the supporting electrode surface with an optimal mass of 2D MoS2 nanosheets results in a lowering of the HER onset potential by ca. 0.33, 0.57, 0.29 and 0.31 V at EPPG, GC, SPE and BDD electrodes compared to their unmodified counterparts respectively. The lowering of the HER onset potential is associated with each supporting electrodes individual electron transfer kinetics/properties. The effect of MoS2 coverage is also explored. We reveal that its ability to catalyse the HER is dependent on the mass deposited until a critical mass of 2D MoS2 nanosheets is achieved, after which its electrocatalytic benefits and/or surface stability curtail. The active surface site density and turn over frequency for the 2D MoS2 nanosheets is determined, characterised and found to be dependent on both the coverage of 2D MoS2 nanosheets and the underlying/supporting substrate. This work is essential for those designing, fabricating and consequently electrochemically testing 2D nanosheet materials for the HER

    Tailoring the electrochemical properties of 2D-hBN via physical linear defects: physicochemical, computational and electrochemical characterisation

    Get PDF
    Monolayer hexagonal-boron nitride films (2D-hBN) are typically reported within the literature to be electrochemically inactive due to their considerable band gap (ca. 5.2–5.8 eV). It is demonstrated herein that introducing physical linear defects (PLDs) upon the basal plane surface of 2D-hBN gives rise to electrochemically useful signatures. The reason for this transformation from insulator to semiconductor (inferred from physicochemical and computational characterisation) is likely due to full hydrogenation and oxygen passivation of the boron and/or nitrogen at edge sites. This results in a decrease in the band gap (from ca. 6.11 to 2.36/2.84 eV; theoretical calculated values, for the fully hydrogenated oxygen passivation at the N or B respectively). The 2D-hBN films are shown to be tailored through the introduction of PLDs, with the electrochemical behaviour dependent upon the surface coverage of edge plane-sites/defects, which is correlated with electrochemical performance towards redox probes (hexaammineruthenium(III) chloride and Fe2+/3+) and the hydrogen evolution reaction. This manuscript de-convolutes, for the first time, the fundamental electron transfer properties of 2D-hBN, demonstrating that through implementation of PLDs, one can beneficially tailor the electrochemical properties of this nanomateria

    2D Molybdenum Disulphide (2D-MoS2) Modified Electrodes Explored Towards the Oxygen Reduction Reaction

    Get PDF
    Two-dimensional molybdenum disulphide nanosheets (2D-MoS2)have proven to be an effective lectro- catalyst, with particular attention being focused on their use towards increasing the efficiency of the reac-tions associated with hydrogen fuel cells. Whilst the majority of research has focused on the Hydrogen Evolution Reaction (HER), herein we explore the use of 2D-MoS2 as a potential electrocatalyst for the much less researched Oxygen Reduction Reaction (ORR). We stray from literature conventions and perform experiments in 0.1 M H2SO4 acidic electrolyte for the first time, evaluating the electrochemical performance of the ORR with 2D-MoS2 electrically wired/immobilised upon several carbon based elec-trodes (namely; Boron Doped Diamond (BDD), Edge Plane Pyrolytic Graphite (EPPG), Glassy Carbon (GC) and Screen-Printed Electrodes (SPE)) whilst exploring a range of 2D-MoS2 coverages/masses. Conse-quently, the findings of this study are highly applicable to real world fuel cell applications. We show that significant improvements in ORR activity can be achieved through the careful selection of the under-lying/supporting carbon materials that electrically wire the 2D-MoS2and utilisation of an optimal mass of 2D-MoS2. The ORR onset is observed to be reduced to ca.+0.10 V for EPPG, GC and SPEs at 2D-MoS2 (1524 ng cm−2 modification), which is far closer to Pt at +0.46 V compared to bare/unmodified EPPG, GC and SPE counterparts. This report is the first to demonstrate such beneficial electrochemical responses in acidic conditions using a 2D-MoS2 based electrocatalyst material on a carbon-based substrate (SPEs in this case). Investigation of the beneficial reaction mechanism reveals the ORR to occur via a 4 electron process in specific conditions; elsewhere a 2 electron process is observed. This work offers valuable insights for those wishing to design, fabricate and/or electrochemically test 2D-nanosheet materials towards the OR

    Mainstreams of Horizontal Gene Exchange in Enterobacteria: Consideration of the Outbreak of Enterohemorrhagic E. coli O104:H4 in Germany in 2011

    Get PDF
    Escherichia coli O104:H4 caused a severe outbreak in Europe in 2011. The strain TY-2482 sequenced from this outbreak allowed the discovery of its closest relatives but failed to resolve ways in which it originated and evolved. On account of the previous statement, may we expect similar upcoming outbreaks to occur recurrently or spontaneously in the future? The inability to answer these questions shows limitations of the current comparative and evolutionary genomics methods.status: publishe

    Using State Space Exploration to Determine How Gene Regulatory Networks Constrain Mutation Order in Cancer Evolution

    Get PDF
    Cancer develops via the progressive accumulation of somatic mutations, which subvert the normal operation of the gene regulatory network of the cell. However, little is known about the order in which mutations are acquired in successful clones. A particular sequence of mutations may confer an early selective advantage to a clone by increasing survival or proliferation, or lead to negative selection by triggering cell death. The space of allowed sequences of mutations is therefore constrained by the gene regulatory network. Here, we introduce a methodology for the systematic exploration of the effect of every possible sequence of oncogenic mutations in a cancer cell modelled as a qualitative network. Our method uses attractor identification using binary decision diagrams and can be applied to both synchronous and asynchronous systems. We demonstrate our method using a recently developed model of ER-negative breast cancer. We show that there are differing levels of constraint in the order of mutations for different combinations of oncogenes, and that the effects of ErbB2/HER2 over-expression depend on the preceding mutations
    corecore