5,201 research outputs found
Time-dependent evolution of two coupled Luttinger liquids
We consider two disconnected Luttinger liquids which are coupled at
through chiral density-density interactions. Both for and the
system is exactly solvable by means of bosonization and this allows to evaluate
analytically the time-dependence of correlation functions. We find that in the
long-time limit the critical exponent governing the one-particle correlation
function differs from the exponent dictated by the equilibrium ground state of
the coupled system. We also discuss how this reflects on some physical
quantities which are accessible in real experiments.Comment: 6 pages, 1 eps fig, revised version accepted for publication in Phys.
Rev.
Real time evolution using the density matrix renormalization group
We describe an extension to the density matrix renormalization group method
incorporating real time evolution into the algorithm. Its application to
transport problems in systems out of equilibrium and frequency dependent
correlation functions is discussed and illustrated in several examples. We
simulate a scattering process in a spin chain which generates a spatially
non-local entangled wavefunction.Comment: 4 pages, 4 eps figures, some minor corrections in text and Eq.(3
Gateway Modeling and Simulation Plan
This plan institutes direction across the Gateway Program and the Element Projects to ensure that Cross Program M&S are produced in a manner that (1) generate the artifacts required for NASA-STD-7009 compliance, (2) ensures interoperability of M&S exchanged and integrated across the program and, (3) drives integrated development efforts to provide cross-domain integrated simulation of the Gateway elements, space environment, and operational scenarios. This direction is flowed down via contractual enforcement to prime contractors and includes both the GMS requirements specified in this plan and the NASASTD- 7009 derived requirements necessary for compliance. Grounding principles for management of Gateway Models and Simulations (M&S) are derived from the Columbia Accident Investigation Board (CAIB) report and the Diaz team report, A Renewed Commitment to Excellence. As an outcome of these reports, and in response to Action 4 of the Diaz team report, the NASA Standard for Models and Simulations, NASA-STD-7009 was developed. The standard establishes M&S requirements for development and use activities to ensure proper capture and communication of M&S pedigree and credibility information to Gateway program decision makers. Through the course of the Gateway program life cycle M&S will be heavily relied upon to conduct analysis, test products, support operations activities, enable informed decision making and ultimately to certify the Gateway with an acceptable level of risk to crew and mission. To reduce risk associated with M&S influenced decisions, this plan applies the NASA-STD-7009 requirements to produce the artifacts that support credibility assessments and ensure the information is communicated to program management
Pastoral women’s land rights and village land use planning in Tanzania: Experiences from the sustainable rangeland management project
In pastoral societies women face many challenges. Some describe these as a ‘double burden’ – that is, as
pastoralists and as women. However, pastoral women may obtain a significant degree of protection from
customary law even if customary institutions are male-dominated. In periods of change (economic, social,
political), this protection may be lost, and without protection from statutory laws, women are in danger of
“falling between two stools” (Adoko and Levine 2009). A study carried out in four villages in Tanzania,
supported by the International Land Coalition, sought to understand the challenges and opportunities
facing pastoral women with respect to accessing land and resources, in the context of village land use
planning. This research presents empirical data on pastoral women’s land rights, shedding light on some
of the detail of these rand their manifestation taking into account the differing contexts, land use patterns,
and nature of rights to land. There are some common themes – particularly around the challenges facing
women in pastoral communities including lack of space to make their views heard, lack of awareness of
their rights, coupled with broader governance challenges. New processes underway such as a
government-led review of Tanzania’s land policy provide opportunities to overcome these challenges
Finite Temperature Density Matrix Renormalization using an enlarged Hilbert space
We apply a generalization of the time-dependent DMRG to study finite
temperature properties of several quantum spin chains, including the frustrated
model. We discuss several practical issues with the method, including
use of quantum numbers and finite size effects. We compare with transfer-matrix
DMRG, finding that both methods produce excellent results.Comment: 4 pages and 4 figure
Investigations into the Sarcomeric Protein and Ca2+-Regulation Abnormalities Underlying Hypertrophic Cardiomyopathy in Cats (Felix catus).
Hypertrophic cardiomyopathy (HCM) is the most common single gene inherited cardiomyopathy. In cats (Felix catus) HCM is even more prevalent and affects 16% of the outbred population and up to 26% in pedigree breeds such as Maine Coon and Ragdoll. Homozygous MYBPC3 mutations have been identified in these breeds but the mutations in other cats are unknown. At the clinical and physiological level feline HCM is closely analogous to human HCM but little is known about the primary causative mechanism. Most identified HCM causing mutations are in the genes coding for proteins of the sarcomere. We therefore investigated contractile and regulatory proteins in left ventricular tissue from 25 cats, 18 diagnosed with HCM, including a Ragdoll cat with a homozygous MYBPC3 R820W, and 7 non-HCM cats in comparison with human HCM (from septal myectomy) and donor heart tissue. Myofibrillar protein expression was normal except that we observed 20–44% MyBP-C haploinsufficiency in 5 of the HCM cats. Troponin extracted from 8 HCM and 5 non-HCM cat hearts was incorporated into thin filaments and studied by in vitro motility assay. All HCM cat hearts had a higher (2.06 ± 0.13 fold) Ca2+-sensitivity than non-HCM cats and, in all the HCM cats, Ca2+-sensitivity was not modulated by troponin I phosphorylation. We were able to restore modulation of Ca2+-sensitivity by replacing troponin T with wild-type protein or by adding 100 μM Epigallocatechin 3-gallate (EGCG). These fundamental regulatory characteristics closely mimic those seen in human HCM indicating a common molecular mechanism that is independent of the causative mutation. Thus, the HCM cat is a potentially useful large animal model
Optimal time-dependent lattice models for nonequilibrium dynamics
Lattice models are abundant in theoretical and condensed-matter physics.
Generally, lattice models contain time-independent hopping and interaction
parameters that are derived from the Wannier functions of the noninteracting
problem. Here, we present a new concept based on time-dependent Wannier
functions and the variational principle that leads to optimal time-dependent
lattice models. As an application, we use the Bose-Hubbard model with
time-dependent Wannier functions to study a quench scenario involving higher
bands. We find a separation of times scales in the dynamics and show that under
some circumstances the multi-band nonequilibrium dynamics of a quantum system
can be obtained essentially at the cost of a single-band model.Comment: 14 pages, 3 figure
Quantum data compression, quantum information generation, and the density-matrix renormalization group method
We have studied quantum data compression for finite quantum systems where the
site density matrices are not independent, i.e., the density matrix cannot be
given as direct product of site density matrices and the von Neumann entropy is
not equal to the sum of site entropies. Using the density-matrix
renormalization group (DMRG) method for the 1-d Hubbard model, we have shown
that a simple relationship exists between the entropy of the left or right
block and dimension of the Hilbert space of that block as well as of the
superblock for any fixed accuracy. The information loss during the RG procedure
has been investigated and a more rigorous control of the relative error has
been proposed based on Kholevo's theory. Our results are also supported by the
quantum chemistry version of DMRG applied to various molecules with system
lengths up to 60 lattice sites. A sum rule which relates site entropies and the
total information generated by the renormalization procedure has also been
given which serves as an alternative test of convergence of the DMRG method.Comment: 8 pages, 7 figure
- …
