1,346 research outputs found

    Seismic signatures of stellar cores of solar-like pulsators: dependence on mass and age

    Full text link
    Useful information from the inner layers of stellar pulsators may be derived from the study of their oscillations. In this paper we analyse three diagnostic tools suggested in the literature built from the oscillation frequencies computed for a set of main sequence models with masses between 1.0M1.0\, {\rm M}_{\odot} and 1.6M1.6\, {\rm M}_{\odot}, to check what information they may hold about stellar cores. For the models with convective cores (M1.2MM \geq 1.2\,{\rm M}_{\odot}) we find a relation between the frequency slopes of the diagnostic tools and the size of the jump in the sound speed at the edge of the core. We show that this relation is independent of the mass of the models. In practice, since the size of the jump in the sound speed is related to the age of the star, using these seismic tools we may, in principle, infer the star's evolutionary state. We also show that when combining two of the three diagnostic tools studied, we are able to distinguish models with convective cores from models without a convective core but with strong sound-speed gradients in the inner layers

    On the inference of stellar ages and convective-core properties in main-sequence solar-like pulsators

    Full text link
    Particular diagnostic tools may isolate the signature left on the oscillation frequencies by the presence of a small convective core. Their frequency derivative is expected to provide information about convective core's properties and stellar age. The main goal of this work is to study the potential of the diagnostic tools with regards to the inference of stellar age and stellar core's properties. For that, we computed diagnostic tools and their frequency derivatives from the oscillation frequencies of main-sequence models with masses between 1.0 and 1.6M1.6\,{\rm\,M}_{\odot} and with different physics. We considered the dependence of the diagnostic tools on stellar age and on the size of the relative discontinuity in the squared sound speed at the edge of the convectively unstable region. We find that the absolute value of the frequency derivatives of the diagnostic tools increases as the star evolves on the main sequence. The fraction of stellar main-sequence evolution for models with masses >1.2M>1.2\,{\rm\,M}_{\odot} may be estimated from the frequency derivatives of two of the diagnostic tools. For lower mass models, constraints on the convective core's overshoot can potentially be derived based on the analysis of the same derivatives. For at least 35 per cent of our sample of stellar models the frequency derivative of the diagnostic tools takes its maximum absolute value on the frequency range where observed oscillations may be expected.Comment: 11 pages, 12 figures, published in MNRA

    Peaks and Troughs in Helioseismology: The Power Spectrum of Solar Oscillations

    Get PDF
    I present a matched-wave asymptotic analysis of the driving of solar oscillations by a general localised source. The analysis provides a simple mathematical description of the asymmetric peaks in the power spectrum in terms of the relative locations of eigenmodes and troughs in the spectral response. It is suggested that the difference in measured phase function between the modes and the troughs in the spectrum will provide a key diagnostic of the source of the oscillations. I also suggest a form for the asymmetric line profiles to be used in the fitting of solar power spectra. Finally I present a comparison between the numerical and asymptotic descriptions of the oscillations. The numerical results bear out the qualitative features suggested by the asymptotic analysis but suggest that numerical calculations of the locations of the troughs will be necessary for a quantitative comparison with the observations.Comment: 18 pages + 8 separate figures. To appear in Ap

    Green's functions for far-side seismic images: a polar expansion approach

    Full text link
    We have computed seismic images of magnetic activity on the far surface of the Sun by using a seismic-holography technique. As in previous works, the method is based on the comparison of waves going in and out of a particular point in the Sun but we have computed here the Green's functions from a spherical polar expansion of the adiabatic wave equations in the Cowling approximation instead of using the ray-path approximation previously used in the far-side holography. A comparison between the results obtained using the ray theory and the spherical polar expansion is shown. We use the gravito-acoustic wave equation in the local plane-parallel limit in both cases and for the latter we take the asymptotic approximation for the radial dependencies of the Green's function. As a result, improved images of the far-side can be obtained from the polar-expansion approximation, especially when combining the Green's functions corresponding to two and three skips. We also show that the phase corrections in the Green's functions due to the incorrect modeling of the uppermost layers of the Sun can be estimated from the eigenfrequencies of the normal modes of oscillation.Comment: 8 pages, 5 figures, Astrophysical Journal, accepted (2010

    Local models of stellar convection II: Rotation dependence of the mixing length relations

    Full text link
    We study the mixing length concept in comparison to three-dimensional numerical calculations of convection with rotation. In a limited range, the velocity and temperature fluctuations are linearly proportional to the superadiabaticity, as predicted by the mixing length concept and in accordance with published results. The effects of rotation are investigated by varying the Coriolis number, Co = 2 Omega tau, from zero to roughly ten, and by calculating models at different latitudes. We find that \alpha decreases monotonically as a function of the Coriolis number. This can be explained by the decreased spatial scale of convection and the diminished efficiency of the convective energy transport, the latter of which leads to a large increase of the superadibaticity, \delta = \nabla - \nabla_ad as function of Co. Applying a decreased mixing length parameter in a solar model yields very small differences in comparison to the standard model within the convection zone. The main difference is the reduction of the overshooting depth, and thus the depth of the convection zone, when a non-local version of the mixing length concept is used. Reduction of \alpha by a factor of roughly 2.5 is sufficient to reconcile the difference between the model and helioseismic results. The numerical results indicate reduction of \alpha by this order of magnitude.Comment: Final published version, 8 pages, 9 figure

    Development of the opto-mechanical design for ICE-T

    Full text link
    ICE-T (International Concordia Explorer Telescope) is a double 60 cm f/1.1 photometric robotic telescope, on a parallactic mount, which will operate at Dome C, in the long Antarctic night, aiming to investigate exoplanets and activity of the hosting stars. Antarctic Plateau site is well known to be one of the best in the world for observations because of sky transparency in all wavelengths and low scintillation noise. Due to the extremely harsh environmental conditions (the lowest average temperature is -80^\circC) the criteria adopted for an optimal design are really challenging. Here we present the strategies we have adopted so far to fulfill the mechanical and optical requirements.Comment: 7 pages, 2 figures, contributed talk at 'An astronomical Observatory at Concordia (Dome C, Antarctica) for the next decade', 11-15 May, Rome (Italy

    Effects of organic plant oils and role of oxidation on nutrient utilization in juvenile rainbow trout (Oncorhynchus mykiss)

    Get PDF
    The study compared the effect of four either fresh or force oxidized organic plant oils in diets for juvenile rainbow trout (Oncorhynchus mykiss) in which 47% of conventional LT fish meal protein was substituted by a mixture of 3 organic plant protein concentrates. Fish oil was completely substituted with either organic linseed oil; rape seed oil; sunflower oil or grape seed oil and evaluated based on feed intake, feed utilization, growth and digestibility. None of the plant oils affected feed intake and growth parameters. Organic plant oils had all a positive effect on lipid digestibility as compared with the fish oil based control diet, despite the very different FA profiles. The organic vegetable oils did not undergo autoxidation, as opposed to the fish oil control for which lipid digestibility was significantly negative influenced

    Coriolis force corrections to g-mode spectrum in 1D MHD model

    Get PDF
    The corrections to g-mode frequencies caused by the presence of a central magnetic field and rotation of the Sun are calculated. The calculations are carried out in the simple one dimensional magnetohydrodynamical model using the approximations which allow one to find the purely analytical spectra of magneto-gravity waves beyond the scope of the JWKB approximation and avoid in a small background magnetic field the appearance of the cusp resonance which locks a wave within the radiative zone. These analytic results are compared with the satellite observations of the g-mode frequency shifts which are of the order one per cent as given in the GOLF experiment at the SoHO board. The main contribution turns out to be the magnetic frequency shift in the strong magnetic field which obeys the used approximations. In particular, the fixed magnetic field strength 700 KG results in the mentioned value of the frequency shift for the g-mode of the radial order n=-10. The rotational shift due to the Coriolis force appears to be small and does not exceed a fracton of per cent, \alpha_\Omega < 0.003.Comment: RevTeX4, 9 pages, 4 eps figures; accepted for publication in Astronomy Reports (Astronomicheskii Zhurnal

    The CoRoT Evolution and Seismic Tools Activity: Goals and Tasks

    Full text link
    The forthcoming data expected from space missions such as CoRoT require the capacity of the available tools to provide accurate models whose numerical precision is well above the expected observational errors. In order to secure that these tools meet the specifications, a team has been established to test and, when necessary, to improve the codes available in the community. The CoRoT evolution and seismic tool activity (ESTA) has been set up with this mission. Several groups have been involved. The present paper describes the motivation and the organisation of this activity, providing the context and the basis for the presentation of the results that have been achieved so far. This is not a finished task as future even better data will continue to demand more precise and complete tools for asteroseismology.Comment: 11 pages, 3 figures, accepted for publication in Astrophysics and Space Science, 'CoRoT ESTA' special volum

    Beat Cepheids as Probes of Stellar and Galactic Metallicity

    Get PDF
    The mere location of a Beat Cepheid model in a Period Ratio vs. Period diagram (Petersen diagram) puts very tight constraints on its metallicity Z. The Beat Cepheid Peterson diagrams are revisited with linear nonadiabatic turbulent convective models, and their accuracy as a probe for stellar metallicity is evaluated. They are shown to be largely independent of the helium content Y, and they are also only weakly dependent on the mass-luminosity relation that is used in their construction. However, they are found to show sensitivity to the relative abundances of the elements that are lumped into the metallicity parameter Z. Rotation is estimated to have but a small effect on the 'pulsation metallicities'. A composite Petersen diagram is presented that allows one to read off upper and lower limits on the metallicity Z from the measured period P0 and period ratio P1/P0.Comment: 9 pages, 12 color figures (black and white version available from 1st author's website). With minor revisions. to appear in Ap
    corecore