270 research outputs found

    Multiport Vector Network Analyzer Configured in RF Interferometric Mode for Reference Impedance Renormalization

    Get PDF
    International audienceA novel active microwave interferometric technique is implemented on a multiport vector network analyzer for renormalizing the reference impedance 50 Ohms into any desired complex impedance. The resulting measured reflection coefficient around the new reference impedance is around zero, resulting in high measurement sensitivity. The method proposed avoids any external component commonly found in interferometric setups. In addition, a zeroing process including vector calibration is developed for broad frequency range and requires only a software procedure to be implemented in the system framework

    Dynamic pH mapping in microfluidic devices by integrating adaptive coatings based on polyaniline with colorimetric imaging techniques

    Get PDF
    In this paper we present a microfluidic device that has integrated pH optical sensing capabilities based on polyaniline. The optical properties of polyaniline coatings change in response to the pH of the solution that is flushed inside the microchannel offering the possibility of monitoring pH in continuous flow over a 10 wide pH range throughout the entire channel length. This work also features an innovative detection system for spatial localisation of chemical pH gradients along microfluidic channels through the use of a low cost optical device. Specifically, the use of a microfluidic channel coated with polyaniline is shown to respond colorimetrically to pH and that effect is detected by the detection system, even when pH gradients are induced within the channel. This study explores the capability of detecting this gradient by means of imaging techniques and the mapping of the camera’s response to its corresponding pH after a successful calibration process. The provision of an inherently responsive channel means that changes in the pH of a sample moving through the system can be detected dynamically using digital imaging along the entire channel length in real time, without the need to add reagents to the sample. This approach is generic and can be applied to other chemically responsive coatings immobilised on microchannels

    Sliding mode control of systems with time-varying delays via descriptor approach

    Get PDF
    International audienceIn this paper, we combine a descriptor approach to stability and control of linear systems with time-varying delays, which is based on the Lyapunov-Krasovskii techniques, with a recent result on sliding mode control of such systems. The systems under consideration have norm-bounded uncertainties and uncertain bounded delays. The solution is given in terms of linear matrix inequalities (LMIs) and improves the previous results based on other Lyapunov techniques. A numerical example illustrates the advantages of the new method

    Elevated aluminium concentration in acidified headwater streams lowers aquatic hyphomycete diversity and impairs leaf-litter breakdown.

    Get PDF
    Aquatic hyphomycetes play an essential role in the decomposition of allochthonous organic matter which is a fundamental process driving the functioning of forested headwater streams. We studied the effect of anthropogenic acidification on aquatic hyphomycetes associated with decaying leaves of Fagus sylvatica in six forested headwater streams (pH range, 4.3-7.1). Non-metric multidimensional scaling revealed marked differences in aquatic hyphomycete assemblages between acidified and reference streams. We found strong relationships between aquatic hyphomycete richness and mean Al concentration (r = -0.998, p < 0.0001) and mean pH (r = 0.962, p < 0.002), meaning that fungal diversity was severely depleted in acidified streams. By contrast, mean fungal biomass was not related to acidity. Leaf breakdown rate was drastically reduced under acidic conditions raising the issue of whether the functioning of headwater ecosystems could be impaired by a loss of aquatic hyphomycete species

    Irreversible impact of past land use on forest soils and biodiversity.

    Get PDF
    Abstract. In western Europe, forest area has been expanding rapidly since the 19th century, mainly on former agricultural land. Previous studies show that plant diversity differs between these recent forests and ancient forests that were already forested at the time of first national cadastral surveys, around 1800. Here, we investigated the duration of such agricultural aftereffects. In northeastern France, large areas were deforested during the Roman occupation and thereafter abandoned to forest. In one such forest that was farmed during the period AD 50-250, we show that species richness and plant communities vary according to the intensity of former agriculture. These variations are linked to longterm changes of chemical and structural soil properties. Hence, we suggest that such effects of past agricultural land use on forest biodiversity may be irreversible on an historical time scale

    Alternative splicing and nonsense-mediated decay regulate telomerase reverse transcriptase (TERT) expression during virus-induced lymphomagenesis in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Telomerase activation, a critical step in cell immortalization and oncogenesis, is partly regulated by alternative splicing. In this study, we aimed to use the Marek's disease virus (MDV) T-cell lymphoma model to evaluate TERT regulation by splicing during lymphomagenesis <it>in vivo</it>, from the start point to tumor establishment.</p> <p>Results</p> <p>We first screened cDNA libraries from the chicken MDV lymphoma-derived MSB-1 T- cell line, which we compared with B (DT40) and hepatocyte (LMH) cell lines. The chTERT splicing pattern was cell line-specific, despite similar high levels of telomerase activity. We identified 27 alternative transcripts of chicken TERT (chTERT). Five were in-frame alternative transcripts without <it>in vitro </it>telomerase activity in the presence of viral or chicken telomerase RNA (vTR or chTR), unlike the full-length transcript. Nineteen of the 22 transcripts with a premature termination codon (PTC) harbored a PTC more than 50 nucleotides upstream from the 3' splice junction, and were therefore predicted targets for nonsense-mediated decay (NMD). The major PTC-containing alternatively spliced form identified in MSB1 (ie10) was targeted to the NMD pathway, as demonstrated by UPF1 silencing. We then studied three splicing events separately, and the balance between in-frame alternative splice variants (d5f and d10f) plus the NMD target i10ec and constitutively spliced chTERT transcripts during lymphomagenesis induced by MDV indicated that basal telomerase activity in normal T cells was associated with a high proportion of in-frame non functional isoforms and a low proportion of constitutively spliced chTERT. Telomerase upregulation depended on an increase in active constitutively spliced chTERT levels and coincided with a switch in alternative splicing from an in-frame variant to NMD-targeted variants.</p> <p>Conclusions</p> <p>TERT regulation by splicing plays a key role in telomerase upregulation during lymphomagenesis, through the sophisticated control of constitutive and alternative splicing. Using the MDV T-cell lymphoma model, we identified a chTERT splice variant as a new NMD target.</p

    Cross-basin and cross-taxa patterns of marine community tropicalization and deborealization in warming European seas

    Get PDF
    Ocean warming and acidification, decreases in dissolved oxygen concentrations, and changes in primary production are causing an unprecedented global redistribution of marine life. The identification of underlying ecological processes underpinning marine species turnover, particularly the prevalence of increases of warm-water species or declines of cold-water species, has been recently debated in the context of ocean warming. Here, we track changes in the mean thermal affinity of marine communities across European seas by calculating the Community Temperature Index for 65 biodiversity time series collected over four decades and containing 1,817 species from different communities (zooplankton, coastal benthos, pelagic and demersal inverte�brates and fish). We show that most communities and sites have clearly responded to ongoing ocean warming via abundance increases of warm-water species (tropicalization, 54%) and decreases of cold-water species (debor�ealization, 18%). Tropicalization dominated Atlantic sites compared to semi�enclosed basins such as the Mediterranean and Baltic Seas, probably due to physical barrier constraints to connectivity and species colonization. Semi�enclosed basins appeared to be particularly vulnerable to ocean warming, experiencing the fastest rates of warming and biodiversity loss through deborealization

    70 GHZ FMAX fully-depleted SOI MOSFET’S for low-power wireless applications

    Get PDF
    For the first time, excellent microwave performances including high frequency noise are ported for 0.25 micron gate channel length Fully Depleted (FD) Silicon-on-Insulator (SOI) MOSFET’s: a maximum extrapolated oscillation frequency (fmax) of 70 GHz and the state-of-the-art minimum noise figure (NFmin) of 0.8 dB with high available associated gain (Gass) of 13 dB at 6 GHz, at Vds = 0.75 V, Pdc < 3 mW, have been measured. We demonstrate that the kink related low frequency noise overshoot induced by the floating body effects disappears if the active silicon film thickness is thinned down to 30 nm. Ring oscillators measurements show also that SOI inverters are 30% faster than bulk ones. Finally, the operation at 1.8 V of a sigma delta modulator as well as of critical RF circuits (quadrature generator and mixers) for a zero IF 2 GHz GSM receiver has been demonstrated with this technology
    corecore