126 research outputs found
Wind Energy Forecasting at Different Time Horizons with Individual and Global Models
This paper has been presented at: 14th IFIP International Conference on Artificial Intelligence Applications and InnovationsIn this work two different machine learning approaches have been studied to predict wind power for different time horizons: individual and global models. The individual approach constructs a model for each horizon while the global approach obtains a single model that can be used for all horizons. Both approaches have advantages and disadvantages. Each individual model is trained with data pertaining to a single horizon, thus it can be specific for that horizon, but can use fewer data for training than the global model, which is constructed with data belonging to all horizons. Support Vector Machines have been used for constructing the individual and global models. This study has been tested on energy production data obtained from the Sotavento wind farm and meteorological data from the European Centre for Medium-Range Weather Forecasts, for a 5 × 5 grid around Sotavento. Also, given the large amount of variables involved, a feature selection algorithm (Sequential Forward Selection) has been used in order to improve the performance of the models. Experimental results show that the global model is more accurate than the individual ones, specially when feature selection is used.The authors acknowledge financial support granted by the Spanish Ministry of Science under contract ENE2014-56126-C2-2-R
Estimation and quantification of vigilance using ERPs and eye blink rate with a fuzzy model-based approach
Genetic algorithm development and application to electrical power systems optimization problems
DRIMPAC—Unified Demand Response Interoperability Framework Enabling Market Participation of Active Energy Consumers
Residential and tertiary buildings are responsible for 44% of final energy consumption in Europe. However, they are currently not engaged in Demand Response (DR) activities due to technology-related and consumer-related roadblocks. One of the main technological roadblocks is the extreme fragmentation of protocols, data models and standards for Building Energy Management (BEM) systems and Building to Grid (B2G) communications. DRIMPAC is an EU-funded Innovation Action that aims to address the interoperability gaps and standards fragmentation in the residential and commercial buildings Demand Response domain aiming to reduce costs for all involved actors and make DR more attractive for the end prosumer
Four Machine Learning Algorithms for Biometrics Fusion: A Comparative Study
We examine the efficiency of four machine learning algorithms for the fusion of several biometrics modalities to create a multimodal biometrics security system. The algorithms examined are Gaussian Mixture Models (GMMs), Artificial Neural Networks (ANNs), Fuzzy Expert Systems (FESs), and Support Vector Machines (SVMs). The fusion of biometrics leads to security systems that exhibit higher recognition rates and lower false alarms compared to unimodal biometric security systems. Supervised learning was carried out using a number of patterns from a well-known benchmark biometrics database, and the validation/testing took place with patterns from the same database which were not included in the training dataset. The comparison of the algorithms reveals that the biometrics fusion system is superior to the original unimodal systems and also other fusion schemes found in the literature
A fuzzy expert system for the forecasting of wind speed and power generation in wind farms
Current methods and advances in forecasting of wind power generation
Wind power generation differs from conventional thermal generation due to the stochastic nature of wind. Thus wind power forecasting plays a key role in dealing with the challenges of balancing supply and demand in any electricity system, given the uncertainty associated with the wind farm power output. Accurate wind power forecasting reduces the need for additional balancing energy and reserve power to integrate wind power. Wind power forecasting tools enable better dispatch, scheduling and unit commitment of thermal generators, hydro plant and energy storage plant and more competitive market trading as wind power ramps up and down on the grid. This paper presents an in-depth review of the current methods and advances in wind power forecasting and prediction. Firstly, numerical wind prediction methods from global to local scales, ensemble forecasting, upscaling and downscaling processes are discussed. Next the statistical and machine learning approach methods are detailed. Then the techniques used for benchmarking and uncertainty analysis of forecasts are overviewed, and the performance of various approaches over different forecast time horizons is examined. Finally, current research activities, challenges and potential future developments are appraised
- …
