585 research outputs found

    The PAMELA and ATIC Signals From Kaluza-Klein Dark Matter

    Get PDF
    In this letter, we study the possibility that Kaluza-Klein dark matter in a model with one universal extra dimension is responsible for the recent observations of the PAMELA and ATIC experiments. In this model, the dark matter particles annihilate largely to charged leptons, which enables them to produce a spectrum of cosmic ray electrons and positrons consistent with the PAMELA and ATIC measurements. To normalize to the observed signal, however, large boost factors (~10^3) are required. Despite these large boost factors and significant annihilation to hadronic modes (35%), we find that the constraints from cosmic ray antiproton measurements can be satisfied. Relic abundance considerations in this model force us to consider a rather specific range of masses (approximately 600-900 GeV) which is very similar to the range required to generate the ATIC spectral feature. The results presented here can also be used as a benchmark for model-independent constraints on dark matter annihilation to hadronic modes.Comment: 4 pages, 3 figure

    Indirect Searches for Kaluza-Klein Dark Matter

    Full text link
    In this talk, we discuss the potential for the indirect detection of Kaluza-Klein dark matter using neutrino telescopes and cosmic positron experiments. We find that future kilometer-scale neutrino telescopes, such as IceCube, as well as future experiments capable of measuring the cosmic positron spectrum, such as PAMELA and AMS-02, will be quite sensitive to this scenario. Current data from the HEAT experiment can also be explained by the presence of Kaluza-Klein dark matter in the Galactic halo.Comment: 6 pages, 3 figures, for the proceedings of IDM 2004, Edinburg

    Detecting MeV Gauge Bosons With High-Energy Neutrino Telescopes

    Get PDF
    If annihilating MeV-scale dark matter particles are responsible for the observed 511 keV emission from the Galactic bulge, then new light gauge bosons which mediate the dark matter annihilations may have other observable consequences. In particular, if such a gauge boson exists and has even very small couplings to Standard Model neutrinos, cosmic neutrinos with ~TeV energies will scatter with the cosmic neutrino background through resonant exchange, resulting in a distinctive spectral absorption line in the high-energy neutrino spectrum. Such a feature could potentially be detected by future high-energy neutrino telescopes.Comment: 4 pages, 3 figure
    corecore