39 research outputs found
No Indications of Axion-Like Particles From Fermi
As very high energy (~100 GeV) gamma rays travel over cosmological distances,
their flux is attenuated through interactions with the extragalactic background
light. Observations of distant gamma ray sources at energies between ~200 GeV
and a few TeV by ground-based gamma ray telescopes such as HESS, however,
suggest that the universe is more transparent to very high energy photons than
had been anticipated. One possible explanation for this is the existence of
axion-like-particles (ALPs) which gamma rays can efficiently oscillate into,
enabling them to travel cosmological distances without attenuation. In this
article, we use data from the Fermi Gamma Ray Space Telescope to calculate the
spectra at 1-100 GeV of two gamma ray sources, 1ES1101-232 at redshift z=0.186
and H2356-309 at z=0.165, and use this in conjunction with the measurements of
ground-based telescopes to test the ALP hypothesis. We find that the
observations can be well-fit by an intrinsic power-law source spectrum with
indices of -1.72 and -2.1 for 1ES1101-232 and H2356-309, respectively, and that
no ALPs or other exotic physics is necessary to explain the observed degree of
attenuation.Comment: 7 pages, 4 figures. v3: Matches published version, the analysis of
H2356-309 is revised, no change in conclusion
The Milky Way as a Kiloparsec-Scale Axionscope
Very high energy gamma-rays are expected to be absorbed by the extragalactic
background light over cosmological distances via the process of
electron-positron pair production. Recent observations of cosmologically
distant gamma-ray emitters by ground based gamma-ray telescopes have, however,
revealed a surprising degree of transparency of the universe to very high
energy photons. One possible mechanism to explain this observation is the
oscillation between photons and axion-like-particles (ALPs). Here we explore
this possibility further, focusing on photon-ALP conversion in the magnetic
fields in and around gamma-ray sources and in the magnetic field of the Milky
Way, where some fraction of the ALP flux is converted back into photons. We
show that this mechanism can be efficient in allowed regions of the ALP
parameter space, as well as in typical configurations of the Galactic Magnetic
Field. As case examples, we consider the spectrum observed from two HESS
sources: 1ES1101-232 at redshift z=0.186 and H 2356-309 at z=0.165. We also
discuss features of this scenario which could be used to distinguish it from
standard or other exotic models.Comment: 7 pages, 4 figures. Matches published versio
Indirect Search for Neutralino Dark Matter with High Energy Neutrinos
We investigate the prospects of indirect searches for supersymmetric
neutralino dark matter. Relic neutralinos gravitationally accumulate in the Sun
and their annihilations produce high energy neutrinos. Muon neutrinos of this
origin can be seen in large detectors like AMANDA, IceCube and ANTARES. We
evaluate the relic density and the detection rate in several models---the
minimal supersymmetric model, minimal supergravity, and supergravity with
non-universal Higgs boson masses at the grand unification scale. We make
realistic estimates for the indirect detection rates including effects of the
muon detection threshold, quark hadronization, and solar absorption. We find
good prospects for detection of neutralinos with mass above 200 GeV.Comment: 36 pages in REVTEX, 18 figure
Strong gravitational lensing probes of the particle nature of dark matter
There is a vast menagerie of plausible candidates for the constituents of
dark matter, both within and beyond extensions of the Standard Model of
particle physics. Each of these candidates may have scattering (and other)
cross section properties that are consistent with the dark matter abundance,
BBN, and the most scales in the matter power spectrum; but which may have
vastly different behavior at sub-galactic "cutoff" scales, below which dark
matter density fluctuations are smoothed out. The only way to quantitatively
measure the power spectrum behavior at sub-galactic scales at distances beyond
the local universe, and indeed over cosmic time, is through probes available in
multiply imaged strong gravitational lenses. Gravitational potential
perturbations by dark matter substructure encode information in the observed
relative magnifications, positions, and time delays in a strong lens. Each of
these is sensitive to a different moment of the substructure mass function and
to different effective mass ranges of the substructure. The time delay
perturbations, in particular, are proving to be largely immune to the
degeneracies and systematic uncertainties that have impacted exploitation of
strong lenses for such studies. There is great potential for a coordinated
theoretical and observational effort to enable a sophisticated exploitation of
strong gravitational lenses as direct probes of dark matter properties. This
opportunity motivates this white paper, and drives the need for: a) strong
support of the theoretical work necessary to understand all astrophysical
consequences for different dark matter candidates; and b) tailored
observational campaigns, and even a fully dedicated mission, to obtain the
requisite data.Comment: Science white paper submitted to the Astro2010 Decadal Cosmology &
Fundamental Physics Science Frontier Pane
Taking the pulse of Earth's tropical forests using networks of highly distributed plots
Tropical forests are the most diverse and productive ecosystems on Earth. While better understanding of these forests is critical for our collective future, until quite recently efforts to measure and monitor them have been largely disconnected. Networking is essential to discover the answers to questions that transcend borders and the horizons of funding agencies. Here we show how a global community is responding to the challenges of tropical ecosystem research with diverse teams measuring forests tree-by-tree in thousands of long-term plots. We review the major scientific discoveries of this work and show how this process is changing tropical forest science. Our core approach involves linking long-term grassroots initiatives with standardized protocols and data management to generate robust scaled-up results. By connecting tropical researchers and elevating their status, our Social Research Network model recognises the key role of the data originator in scientific discovery. Conceived in 1999 with RAINFOR (South America), our permanent plot networks have been adapted to Africa (AfriTRON) and Southeast Asia (T-FORCES) and widely emulated worldwide. Now these multiple initiatives are integrated via ForestPlots.net cyber-infrastructure, linking colleagues from 54 countries across 24 plot networks. Collectively these are transforming understanding of tropical forests and their biospheric role. Together we have discovered how, where and why forest carbon and biodiversity are responding to climate change, and how they feedback on it. This long-term pan-tropical collaboration has revealed a large long-term carbon sink and its trends, as well as making clear which drivers are most important, which forest processes are affected, where they are changing, what the lags are, and the likely future responses of tropical forests as the climate continues to change. By leveraging a remarkably old technology, plot networks are sparking a very modern revolution in tropical forest science. In the future, humanity can benefit greatly by nurturing the grassroots communities now collectively capable of generating unique, long-term understanding of Earth's most precious forests.
Resumen
Los bosques tropicales son los ecosistemas más diversos y productivos del mundo y entender su funcionamiento es crítico para nuestro futuro colectivo. Sin embargo, hasta hace muy poco, los esfuerzos para medirlos y monitorearlos han estado muy desconectados. El trabajo en redes es esencial para descubrir las respuestas a preguntas que trascienden las fronteras y los plazos de las agencias de financiamiento. Aquí mostramos cómo una comunidad global está respondiendo a los desafíos de la investigación en ecosistemas tropicales a través de diversos equipos realizando mediciones árbol por árbol en miles de parcelas permanentes de largo plazo. Revisamos los descubrimientos más importantes de este trabajo y discutimos cómo este proceso está cambiando la ciencia relacionada a los bosques tropicales. El enfoque central de nuestro esfuerzo implica la conexión de iniciativas locales de largo plazo con protocolos estandarizados y manejo de datos para producir resultados que se puedan trasladar a múltiples escalas. Conectando investigadores tropicales, elevando su posición y estatus, nuestro modelo de Red Social de Investigación reconoce el rol fundamental que tienen, para el descubrimiento científico, quienes generan o producen los datos. Concebida en 1999 con RAINFOR (Suramérica), nuestras redes de parcelas permanentes han sido adaptadas en África (AfriTRON) y el sureste asiático (T-FORCES) y ampliamente replicadas en el mundo. Actualmente todas estas iniciativas están integradas a través de la ciber-infraestructura de ForestPlots.net, conectando colegas de 54 países en 24 redes diferentes de parcelas. Colectivamente, estas redes están transformando nuestro conocimiento sobre los bosques tropicales y el rol de éstos en la biósfera. Juntos hemos descubierto cómo, dónde y porqué el carbono y la biodiversidad de los bosques tropicales está respondiendo al cambio climático y cómo se retroalimentan. Esta colaboración pan-tropical de largo plazo ha expuesto un gran sumidero de carbono y sus tendencias, mostrando claramente cuáles son los factores más importantes, qué procesos se ven afectados, dónde ocurren los cambios, los tiempos de reacción y las probables respuestas futuras mientras el clima continúa cambiando. Apalancando lo que realmente es una tecnología antigua, las redes de parcelas están generando una verdadera y moderna revolución en la ciencia tropical. En el futuro, la humanidad puede beneficiarse enormemente si se nutren y cultivan comunidades de investigadores de base, actualmente con la capacidad de generar información única y de largo plazo para entender los que probablemente son los bosques más preciados de la tierra.
Resumo
Florestas tropicais são os ecossistemas mais diversos e produtivos da Terra. Embora uma boa compreensão destas florestas seja crucial para o nosso futuro coletivo, até muito recentemente os esforços de medições e monitoramento foram amplamente desconexos. É essencial formarmos redes para obtermos respostas que transcendem fronteiras e horizontes de agências financiadoras. Neste estudo nós mostramos como uma comunidade global está respondendo aos desafios da pesquisa de ecossistemas tropicais, com equipes diversas medindo florestas, árvore por árvore, em milhares de parcelas monitoradas à longo prazo. Nós revisamos as maiores descobertas científicas deste trabalho, e mostramos também como este processo está mudando a ciência de florestas tropicais. Nossa abordagem principal envolve unir iniciativas de base a protocolos padronizados e gerenciamento de dados a fim de gerar resultados robustos em escalas ampliadas. Ao conectar pesquisadores tropicais e elevar seus status, nosso modelo de Rede de Pesquisa Social reconhece o papel-chave do produtor dos dados na descoberta científica. Concebida em 1999 com o RAINFOR (América do Sul), nossa rede de parcelas permanentes foi adaptada para África (AfriTRON) e Sudeste asiático (T-FORCES), e tem sido extensamente reproduzida em todo o mundo. Agora estas múltiplas iniciativas estão integradas através de uma infraestrutura cibernética do ForestPlots.net, conectando colegas de 54 países de 24 redes de parcelas. Estas iniciativas estão transformando coletivamente o entendimento das florestas tropicais e seus papéis na biosfera. Juntos nós descobrimos como, onde e por que o carbono e a biodiversidade da floresta estão respondendo às mudanças climáticas, e seus efeitos de retroalimentação. Esta duradoura colaboração pantropical revelou um grande sumidouro de carbono persistente e suas tendências, assim como tem evidenciado quais direcionadores são mais importantes, quais processos florestais são mais afetados, onde eles estão mudando, seus atrasos no tempo de resposta, e as prováveis respostas das florestas tropicais conforme o clima continua a mudar. Dessa forma, aproveitando uma notável tecnologia antiga, redes de parcelas acendem faíscas de uma moderna revolução na ciência das florestas tropicais. No futuro a humanidade pode se beneficiar incentivando estas comunidades basais que agora são coletivamente capazes de gerar conhecimentos únicos e duradouros sobre as florestas mais preciosas da Terra.
Résume
Les forêts tropicales sont les écosystèmes les plus diversifiés et les plus productifs de la planète. Si une meilleure compréhension de ces forêts est essentielle pour notre avenir collectif, jusqu'à tout récemment, les efforts déployés pour les mesurer et les surveiller ont été largement déconnectés. La mise en réseau est essentielle pour découvrir les réponses à des questions qui dépassent les frontières et les horizons des organismes de financement. Nous montrons ici comment une communauté mondiale relève les défis de la recherche sur les écosystèmes tropicaux avec diverses équipes qui mesurent les forêts arbre après arbre dans de milliers de parcelles permanentes. Nous passons en revue les principales découvertes scientifiques de ces travaux et montrons comment ce processus modifie la science des forêts tropicales. Notre approche principale consiste à relier les initiatives de base à long terme à des protocoles standardisés et une gestion de données afin de générer des résultats solides à grande échelle. En reliant les chercheurs tropicaux et en élevant leur statut, notre modèle de réseau de recherche sociale reconnaît le rôle clé de l'auteur des données dans la découverte scientifique. Conçus en 1999 avec RAINFOR (Amérique du Sud), nos réseaux de parcelles permanentes ont été adaptés à l'Afrique (AfriTRON) et à l'Asie du Sud-Est (T-FORCES) et largement imités dans le monde entier. Ces multiples initiatives sont désormais intégrées via l'infrastructure ForestPlots.net, qui relie des collègues de 54 pays à travers 24 réseaux de parcelles. Ensemble, elles transforment la compréhension des forêts tropicales et de leur rôle biosphérique. Ensemble, nous avons découvert comment, où et pourquoi le carbone forestier et la biodiversité réagissent au changement climatique, et comment ils y réagissent. Cette collaboration pan-tropicale à long terme a révélé un important puits de carbone à long terme et ses tendances, tout en mettant en évidence les facteurs les plus importants, les processus forestiers qui sont affectés, les endroits où ils changent, les décalages et les réactions futures probables des forêts tropicales à mesure que le climat continue de changer. En tirant parti d'une technologie remarquablement ancienne, les réseaux de parcelles déclenchent une révolution très moderne dans la science des forêts tropicales. À l'avenir, l'humanité pourra grandement bénéficier du soutien des communautés de base qui sont maintenant collectivement capables de générer une compréhension unique et à long terme des forêts les plus précieuses de la Terre.
Abstrak
Hutan tropika adalah di antara ekosistem yang paling produktif dan mempunyai kepelbagaian biodiversiti yang tinggi di seluruh dunia. Walaupun pemahaman mengenai hutan tropika amat penting untuk masa depan kita, usaha-usaha untuk mengkaji dan mengawas hutah-hutan tersebut baru sekarang menjadi lebih diperhubungkan. Perangkaian adalah sangat penting untuk mencari jawapan kepada soalan-soalan yang menjangkaui sempadan dan batasan agensi pendanaan. Di sini kami menunjukkan bagaimana sebuah komuniti global bertindak balas terhadap cabaran penyelidikan ekosistem tropika melalui penglibatan pelbagai kumpulan yang mengukur hutan secara pokok demi pokok dalam beribu-ribu plot jangka panjang. Kami meninjau semula penemuan saintifik utama daripada kerja ini dan menunjukkan bagaimana proses ini sedang mengubah bidang sains hutan tropika. Teras pendekatan kami memberi tumpuan terhadap penghubungan inisiatif akar umbi jangka panjang dengan protokol standar serta pengurusan data untuk mendapatkan hasil skala besar yang kukuh. Dengan menghubungkan penyelidik-penyelidik tropika dan meningkatkan status mereka, model Rangkaian Penyelidikan Sosial kami mengiktiraf kepentingan peranan pengasas data dalam penemuan saintifik. Bermula dengan pengasasan RAINFOR (Amerika Selatan) pada tahun 1999, rangkaian-rangkaian plot kekal kami kemudian disesuaikan untuk Afrika (AfriTRON) dan Asia Tenggara (T-FORCES) dan selanjutnya telah banyak dicontohi di seluruh dunia. Kini, inisiatif-inisiatif tersebut disepadukan melalui infrastruktur siber ForestPlots.net yang menghubungkan rakan sekerja dari 54 negara di 24 buah rangkaian plot. Secara kolektif, rangkaian ini sedang mengubah pemahaman tentang hutan tropika dan peranannya dalam biosfera. Kami telah bekerjasama untuk menemukan bagaimana, di mana dan mengapa karbon serta biodiversiti hutan bertindak balas terhadap perubahan iklim dan juga bagaimana mereka saling bermaklum balas. Kolaborasi pan-tropika jangka panjang ini telah mendedahkan sebuah sinki karbon jangka panjang serta arah alirannya dan juga menjelaskan pemandu-pemandu perubahan yang terpenting, di mana dan bagaimana proses hutan terjejas, masa susul yang ada dan kemungkinan tindakbalas hutan tropika pada perubahan iklim secara berterusan di masa depan. Dengan memanfaatkan pendekatan lama, rangkaian plot sedang menyalakan revolusi yang amat moden dalam sains hutan tropika. Pada masa akan datang, manusia sejagat akan banyak mendapat manfaat jika memupuk komuniti-komuniti akar umbi yang kini berkemampuan secara kolektif menghasilkan pemahaman unik dan jangka panjang mengenai hutan-hutan yang paling berharga di dunia
P752: Sequencing of a KLK15 gene variant in a large cohort of hypermobile Ehlers-Danlos syndrome patients
Abstract LB101: Novel Drug-responsive domain (DRD)-based regulation technology enables tightly controlled activity of potent membrane-bound IL12 in adoptive cell therapies
Abstract
Interleukin 12 (IL12) is an attractive cancer immunotherapeutic known to be extremely potent against solid tumors preclinically. However, the clinical utility of IL12 has been limited by toxicities stemming from high systemic cytokine exposure. Thus, armoring cellular therapies such as chimeric antigen receptor T cells (CAR-Ts) or tumor infiltrating lymphocytes (TILs) with IL12 will require technologies that provide tight control of IL12 expression and localization. Herein, we describe a tightly regulated version of IL12 for use in cellular therapies. First, we show that tethering IL12 to the membrane increases the activity of IL12 at the tumor site in vivo while reducing potential systemic toxicities. Membrane bound (mbIL12) was compared to secreted IL12 in the syngeneic CD8 gp100 TCR transgenic PMEL model. In this model, PMEL T cells transduced with mbIL12 demonstrated similar reduction in B16 tumor outgrowth as secreted IL12. Like secreted IL12, mbIL12 enhanced the expansion of PMEL T cells and retained T cell extrinsic activities, such as activation of myeloid cells and remodeling the tumor microenvironment. However, mbIL12 showed reduced toxicity signals as compared to secreted IL12, including a reduction in serum IFNy. Likewise, in a xenograft system, CD19-CARTs expressing human mbIL12 demonstrated enhanced potency against Raji tumors. To enhance the safety of mbIL12 further we sought to regulate its expression using Obsidian’s cytoDRIVE® technology. This platform consists of small, fully human protein sequences called drug responsive domains (DRD)s, such as carbonic anhydrase 2, that enable regulation of expression of a fused target protein under the control of FDA-approved, orally bioavailable small molecule ligands, such as, acetazolamide. In the absence of ligand (the “off-state”), the fusion protein is unfolded and degraded. In the presence of ligand (the “on-state”), the DRD is stabilized, allowing for protein expression and function. Thus, the cytoDRiVE® system acts as a titratable and reversible rheostat for on-demand protein activity. While a single DRD can enable some regulation of mbIL12 levels, we found that adding a modulation hub that increases the multiplicity of DRDs greatly improves regulation. Indeed, these modifications enabled off-state levels of mbIL12 that were indistinguishable from untransduced controls in HEK and Jurkat cell lines as well as primary human CD19 CAR-T-cells using flow cytometry. These modifications also enhanced mbIL12 regulation, leading up to a 30-fold dynamic range of mbIL12 abundance. Regulated mbIL12 was demonstrated to be active by phosphorylation of STAT4 in bystander NK cells in vitro. Combining DRDs with modulation hubs and membrane tethering enables the control of highly potent, previously clinically intractable cytokines, such as IL12, for use in enhancing cell therapies.
Citation Format: Sean Gregory Smith, James A. Storer, Dexue Sun, Dan Jun Li, Benjamin Primack, Theresa Ross, Scott LaJoie, Jeremy Tchaicha, Dhruv Sethi, Jan ter Meulen, Michelle Ols. Novel Drug-responsive domain (DRD)-based regulation technology enables tightly controlled activity of potent membrane-bound IL12 in adoptive cell therapies [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2022; 2022 Apr 8-13. Philadelphia (PA): AACR; Cancer Res 2022;82(12_Suppl):Abstract nr LB101.</jats:p
