735 research outputs found

    Rotational quenching rate coefficients for H_2 in collisions with H_2 from 2 to 10,000 K

    Get PDF
    Rate coefficients for rotational transitions in H_2 induced by H_2 impact are presented. Extensive quantum mechanical coupled-channel calculations based on a recently published (H_2)_2 potential energy surface were performed. The potential energy surface used here is presumed to be more reliable than surfaces used in previous work. Rotational transition cross sections with initial levels J <= 8 were computed for collision energies ranging between 0.0001 and 2.5 eV, and the corresponding rate coefficients were calculated for the temperature range 2 < T <10,000 K. In general, agreement with earlier calculations, which were limited to 100-6000 K, is good though discrepancies are found at the lowest and highest temperatures. Low-density-limit cooling functions due to para- and ortho-H_2 collisions are obtained from the collisional rate coefficients. Implications of the new results for non-thermal H_2 rotational distributions in molecular regions are also investigated

    Inelastic Diffraction and Spectroscopy of Very Weakly Bound Clusters

    Full text link
    We study the coherent inelastic diffraction of very weakly bound two body clusters from a material transmission grating. We show that internal transitions of the clusters can lead to new separate peaks in the diffraction pattern whose angular positions determine the excitation energies. Using a quantum mechanical approach to few body scattering theory we determine the relative peak intensities for the diffraction of the van der Waals dimers (D_2)_2 and H_2-D_2. Based on the results for these realistic examples we discuss the possible applications and experimental challenges of this coherent inelastic diffraction technique.Comment: 15 pages + 5 figures. J. Phys. B (in press

    Ultracold collisions between two light indistinguishable diatomic molecules: elastic and rotational energy transfer in HD+HD

    Full text link
    A close coupling quantum-mechanical calculation is performed for rotational energy transfer in a HD+HD collision at very low energy, down to the ultracold temperatures: T108T \sim 10^{-8} K. A global six-dimensional H2_2-H2_2 potential energy surface is adopted from a previous work [Boothroyd {\it et al.}, J. Chem. Phys., {\bf 116}, 666 (2002).] State-resolved integral cross sections σijij(εkin)\sigma_{ij\rightarrow i'j'}(\varepsilon_{kin}) of different quantum-mechanical rotational transitions ijijij\rightarrow i'j' in the HD molecules and corresponding state-resolved thermal rate coefficients kijij(T)k_{ij\rightarrow i'j'}(T) have been computed. Additionally, for comparison, H2_2+H2_2 calculations for a few selected rotational transitions have also been performed. The hydrogen and deuterated hydrogen molecules are treated as rigid rotors in this work. A pronounced isotope effect is identified in the cross sections of these collisions at low and ultracold temperatures.Comment: 9 pages, 9 figures. Accepted for publication in Physical Review

    The spectroscopic orbit of Capella revisited

    Full text link
    Context. Capella is among the few binary stars with two evolved giant components. The hotter component is a chromospherically active star within the Hertzsprung gap, while the cooler star is possibly helium-core burning. Aims. The known inclination of the orbital plane from astrometry in combination with precise radial velocities will allow very accurate masses to be determined for the individual Capella stars. This will constrain their evolutionary stage and possibly the role of the active star's magnetic field on the dynamical evolution of the binary system. Methods. We obtained a total of 438 high-resolution \'echelle spectra during the years 2007-2010 and used the measured velocities to recompute the orbital elements. Our double-lined orbital solution yields average residuals of 64 m/s for the cool component and 297 m/s for the more rapidly rotating hotter component. Results. The semi-amplitude of the cool component is smaller by 0.045 km/s than the orbit determination of Torres et al. from data taken during 1996-1999 but more precise by a factor of 5.5, while for the hotter component it is larger by 0.580 km/s and more precise by a factor of 3.6. This corresponds to masses of 2.573\pm0.009 M_sun and 2.488\pm0.008 M_sun for the cool and hot component, respectively. Their relative errors of 0.34% and 0.30% are about half of the values given in Torres et al. for a combined literature- data solution but with absolute values different by 4% and 2% for the two components, respectively. The mass ratio of the system is therefore q = M_A/M_B = 0.9673 \pm 0.0020. Conclusions. Our orbit is the most precise and also likely to be the most accurate ever obtained for Capella

    A Pre-Protostellar Core in L1551

    Full text link
    Large field surveys of NH3, C2S, 13CO and C18O in the L1551 dark cloud have revealed a prolate, pre-protostellar molecular core (L1551-MC) in a relatively quiescent region to the northwest of the well-known IRS 5 source. The kinetic temperature is measured to be 9K, the total mass is ~2Msun, and the average particle density is 10^4-10^5 cm^(-3). L1551-MC is 2.25' x 1.11' in projection oriented at a position angle of 133deg. The turbulent motions are on the order of the sound speed in the medium and contain 4% of the gravitational energy, E_{grav}, of the core. The angular momentum vector is projected along the major axis of L1551-MC corresponding to a rotational energy of 2.5E-3(sin i)^(-2)|E_{grav}|. The thermal energy constitutes about a third of |E_{grav}| and the virial mass is approximately equal to the total mass. L1551-MC is gravitationally bound and in the absence of strong, ~160 microgauss, magnetic fields will likely contract on a ~0.3 Myr time scale. The line profiles of many molecular species suggest that the cold quiescent interior is surrounded by a dynamic, perhaps infalling envelope which is embedded within the ambient molecular gas of L1551.Comment: 27 pages, 7 figures, ApJ accepte

    NH3 in the Central 10 pc of the Galaxy I: General Morphology and Kinematic Connections Between the CND and GMCs

    Full text link
    New VLA images of NH3 (1,1), (2,2), and (3,3) emission in the central 10 parsecs of the Galaxy trace filamentary streams of gas, several of which appear to feed the circumnuclear disk (CND). The NH3 images have a spatial resolution of 16.5''x14.5'' and have better spatial sampling than previous NH3 observations. The images show the ``southern streamer,'' ``50 km/s cloud,'' and new features including a ``western streamer'', 6 parsecs in length, and a ``northern ridge'' which connects to the CND. NH3(3,3) emission is very similar to 1.2 mm dust emission indicating that NH3 traces column density well. Ratios of the NH3(2,2) to (1,1) line intensities give an estimate of the temperature of the gas and indicate high temperatures close to the nucleus and CND. The new data cover a velocity range of 270 km/s, including all velocities observed in the CND, with a resolution of 9.8 km/s. Previous NH3 observations with higher resolution did not cover the entire range of velocities seen in the CND. The large-scale kinematics of the CND do not resemble a coherent ring or disk. We see evidence for a high velocity cloud within a projected distance of 50'' (2 pc) which is only seen in NH3(3,3) and is likely to be hot. Comparison to 6 cm continuum emission reveals that much of the NH3 emission traces the outer edges of Sgr A East and was probably pushed outward by this expanding shell. The connection between the northern ridge (which appears to be swept up by Sgr A East) and the CND indicates that Sgr A East and the CND are in close proximity to each other. Kinematic evidence for these connections is presented in this paper, while the full kinematic analysis of the central 10 pc will be presented in Paper II.Comment: 16 pages (containing 6 figures), 8 additional JPEG figures. Accepted for publication in ApJ. For full resolution images, see http://cfa-www.harvard.edu/~rmcgary/SGRA/nh3_figures.htm

    Deflections in Magnet Fringe Fields

    Get PDF
    A transverse multipole expansion is derived, including the longitudinal components necessarily present in regions of varying magnetic field profile. It can be used for exact numerical orbit following through the fringe field regions of magnets whose end designs introduce no extraneous components, {\it i.e.} fields not required to be present by Maxwell's equations. Analytic evaluations of the deflections are obtained in various approximations. Mainly emphasized is a ``straight-line approximation'', in which particle orbits are treated as straight lines through the fringe field regions. This approximation leads to a readily-evaluated figure of merit, the ratio of r.m.s. end deflection to nominal body deflection, that can be used to determine whether or not a fringe field can be neglected. Deflections in ``critical'' cases (e.g. near intersection regions) are analysed in the same approximation.Comment: To be published in Physical Review

    The ortho-to-para ratio of ammonia in the L1157 outflow

    Get PDF
    We have measured the ortho-to-para ratio of ammonia in the blueshifted gas of the L1157 outflow by observing the six metastable inversion lines from (J, K) = (1, 1) to (6, 6). The highly excited (5, 5) and (6, 6) lines were first detected in the low-mass star forming regions. The rotational temperature derived from the ratio of four transition lines from (3, 3) to (6, 6) is 130-140 K, suggesting that the blueshifted gas is heated by a factor of ~10 as compared to the quiescent gas. The ortho-to-para ratio of the NH3 molecules in the blueshifted gas is estimated to be 1.3--1.7, which is higher than the statistical equilibrium value. This ratio provides us with evidence that the NH3 molecules have been evaporated from dust grains with the formation temperature between 18 and 25 K. It is most likely that the NH3 molecules on dust grains have been released into the gas phase through the passage of strong shock waves produced by the outflow. Such a scenario is supported by the fact that the ammonia abundance in the blueshifted gas is enhanced by a factor of ~5 with respect to the dense quiescent gas.Comment: 16 pages, including 3 PS figures. To appear in the ApJ (Letters). aastex macro

    The Nature of the Molecular Environment within 5 pc of the Galactic Center

    Full text link
    We present a detailed study of molecular gas in the central 10pc of the Galaxy through spectral line observations of four rotation inversion transitions of NH3 made with the VLA. Updated line widths and NH3(1,1) opacities are presented, and temperatures, column densities, and masses are derived. We examine the impact of Sgr A East on molecular material at the Galactic center and find that there is no evidence that the expansion of this shell has moved a significant amount of the 50 km/s GMC. The western streamer, however, shows strong indications that it is composed of material swept-up by the expansion of Sgr A East. Using the mass and kinematics of the western streamer, we calculate an energy of E=(2-9)x10^{51} ergs for the progenitor explosion and conclude that Sgr A East was most likely produced by a single supernova. The temperature structure of molecular gas in the central ~20pc is also analyzed in detail. We find that molecular gas has a ``two-temperature'' structure similar to that measured by Huttemeister et al. (2003a) on larger scales. The largest observed line ratios, however, cannot be understood in terms of a two-temperature model, and most likely result from absorption of NH3(3,3) emission by cool surface layers of clouds. By comparing the observed NH3 (6,6)-to-(3,3) line ratios, we disentangle three distinct molecular features within a projected distance of 2pc from Sgr A*. Gas associated with the highest line ratios shows kinematic signatures of both rotation and expansion. The southern streamer shows no significant velocity gradients and does not appear to be directly associated with either the circumnuclear disk or the nucleus. The paper concludes with a discussion of the line-of-sight arrangement of the main features in the central 10pc.Comment: 51 pages, 16 figures, accepted for publication in ApJ. Due to size limitations, some of the images have been cut from this version. A complete, color PS or PDF version can be downloaded from http://www.astro.columbia.edu/~herrnstein/NH3/paper

    Tentative detection of phosphine in IRC+10216

    Get PDF
    The J,K = 1,0-0,0 rotational transition of phosphine (PH3) at 267 GHz has been tentatively identified with a T_MB = 40 mK spectral line observed with the IRAM 30-m telescope in the C-star envelope IRC+10216. A radiative transfer model has been used to fit the observed line profile. The derived PH3 abundance relative to H2 is 6 x 10^(-9), although it may have a large uncertainty due to the lack of knowledge about the spatial distribution of this species. If our identification is correct, it implies that PH3 has a similar abundance to that reported for HCP in this source, and that these two molecules (HCP and PH3) together take up about 5 % of phosphorus in IRC+10216. The abundance of PH3, as that of other hydrides in this source, is not well explained by conventional gas phase LTE and non-LTE chemical models, and may imply formation on grain surfaces.Comment: 4 pages, 2 figures; accepted for publication in A&A Letter
    corecore