735 research outputs found
Rotational quenching rate coefficients for H_2 in collisions with H_2 from 2 to 10,000 K
Rate coefficients for rotational transitions in H_2 induced by H_2 impact are
presented. Extensive quantum mechanical coupled-channel calculations based on a
recently published (H_2)_2 potential energy surface were performed. The
potential energy surface used here is presumed to be more reliable than
surfaces used in previous work. Rotational transition cross sections with
initial levels J <= 8 were computed for collision energies ranging between
0.0001 and 2.5 eV, and the corresponding rate coefficients were calculated for
the temperature range 2 < T <10,000 K. In general, agreement with earlier
calculations, which were limited to 100-6000 K, is good though discrepancies
are found at the lowest and highest temperatures. Low-density-limit cooling
functions due to para- and ortho-H_2 collisions are obtained from the
collisional rate coefficients. Implications of the new results for non-thermal
H_2 rotational distributions in molecular regions are also investigated
Inelastic Diffraction and Spectroscopy of Very Weakly Bound Clusters
We study the coherent inelastic diffraction of very weakly bound two body
clusters from a material transmission grating. We show that internal
transitions of the clusters can lead to new separate peaks in the diffraction
pattern whose angular positions determine the excitation energies. Using a
quantum mechanical approach to few body scattering theory we determine the
relative peak intensities for the diffraction of the van der Waals dimers
(D_2)_2 and H_2-D_2. Based on the results for these realistic examples we
discuss the possible applications and experimental challenges of this coherent
inelastic diffraction technique.Comment: 15 pages + 5 figures. J. Phys. B (in press
Ultracold collisions between two light indistinguishable diatomic molecules: elastic and rotational energy transfer in HD+HD
A close coupling quantum-mechanical calculation is performed for rotational
energy transfer in a HD+HD collision at very low energy, down to the ultracold
temperatures: K. A global six-dimensional H-H
potential energy surface is adopted from a previous work [Boothroyd {\it et
al.}, J. Chem. Phys., {\bf 116}, 666 (2002).] State-resolved integral cross
sections of different
quantum-mechanical rotational transitions in the HD
molecules and corresponding state-resolved thermal rate coefficients
have been computed. Additionally, for comparison,
H+H calculations for a few selected rotational transitions have also
been performed. The hydrogen and deuterated hydrogen molecules are treated as
rigid rotors in this work. A pronounced isotope effect is identified in the
cross sections of these collisions at low and ultracold temperatures.Comment: 9 pages, 9 figures. Accepted for publication in Physical Review
The spectroscopic orbit of Capella revisited
Context. Capella is among the few binary stars with two evolved giant
components. The hotter component is a chromospherically active star within the
Hertzsprung gap, while the cooler star is possibly helium-core burning. Aims.
The known inclination of the orbital plane from astrometry in combination with
precise radial velocities will allow very accurate masses to be determined for
the individual Capella stars. This will constrain their evolutionary stage and
possibly the role of the active star's magnetic field on the dynamical
evolution of the binary system. Methods. We obtained a total of 438
high-resolution \'echelle spectra during the years 2007-2010 and used the
measured velocities to recompute the orbital elements. Our double-lined orbital
solution yields average residuals of 64 m/s for the cool component and 297 m/s
for the more rapidly rotating hotter component. Results. The semi-amplitude of
the cool component is smaller by 0.045 km/s than the orbit determination of
Torres et al. from data taken during 1996-1999 but more precise by a factor of
5.5, while for the hotter component it is larger by 0.580 km/s and more precise
by a factor of 3.6. This corresponds to masses of 2.573\pm0.009 M_sun and
2.488\pm0.008 M_sun for the cool and hot component, respectively. Their
relative errors of 0.34% and 0.30% are about half of the values given in Torres
et al. for a combined literature- data solution but with absolute values
different by 4% and 2% for the two components, respectively. The mass ratio of
the system is therefore q = M_A/M_B = 0.9673 \pm 0.0020. Conclusions. Our orbit
is the most precise and also likely to be the most accurate ever obtained for
Capella
A Pre-Protostellar Core in L1551
Large field surveys of NH3, C2S, 13CO and C18O in the L1551 dark cloud have
revealed a prolate, pre-protostellar molecular core (L1551-MC) in a relatively
quiescent region to the northwest of the well-known IRS 5 source. The kinetic
temperature is measured to be 9K, the total mass is ~2Msun, and the average
particle density is 10^4-10^5 cm^(-3). L1551-MC is 2.25' x 1.11' in projection
oriented at a position angle of 133deg. The turbulent motions are on the order
of the sound speed in the medium and contain 4% of the gravitational energy,
E_{grav}, of the core. The angular momentum vector is projected along the major
axis of L1551-MC corresponding to a rotational energy of 2.5E-3(sin
i)^(-2)|E_{grav}|. The thermal energy constitutes about a third of |E_{grav}|
and the virial mass is approximately equal to the total mass. L1551-MC is
gravitationally bound and in the absence of strong, ~160 microgauss, magnetic
fields will likely contract on a ~0.3 Myr time scale. The line profiles of many
molecular species suggest that the cold quiescent interior is surrounded by a
dynamic, perhaps infalling envelope which is embedded within the ambient
molecular gas of L1551.Comment: 27 pages, 7 figures, ApJ accepte
NH3 in the Central 10 pc of the Galaxy I: General Morphology and Kinematic Connections Between the CND and GMCs
New VLA images of NH3 (1,1), (2,2), and (3,3) emission in the central 10
parsecs of the Galaxy trace filamentary streams of gas, several of which appear
to feed the circumnuclear disk (CND). The NH3 images have a spatial resolution
of 16.5''x14.5'' and have better spatial sampling than previous NH3
observations. The images show the ``southern streamer,'' ``50 km/s cloud,'' and
new features including a ``western streamer'', 6 parsecs in length, and a
``northern ridge'' which connects to the CND. NH3(3,3) emission is very similar
to 1.2 mm dust emission indicating that NH3 traces column density well. Ratios
of the NH3(2,2) to (1,1) line intensities give an estimate of the temperature
of the gas and indicate high temperatures close to the nucleus and CND. The new
data cover a velocity range of 270 km/s, including all velocities observed in
the CND, with a resolution of 9.8 km/s. Previous NH3 observations with higher
resolution did not cover the entire range of velocities seen in the CND. The
large-scale kinematics of the CND do not resemble a coherent ring or disk. We
see evidence for a high velocity cloud within a projected distance of 50'' (2
pc) which is only seen in NH3(3,3) and is likely to be hot. Comparison to 6 cm
continuum emission reveals that much of the NH3 emission traces the outer edges
of Sgr A East and was probably pushed outward by this expanding shell. The
connection between the northern ridge (which appears to be swept up by Sgr A
East) and the CND indicates that Sgr A East and the CND are in close proximity
to each other. Kinematic evidence for these connections is presented in this
paper, while the full kinematic analysis of the central 10 pc will be presented
in Paper II.Comment: 16 pages (containing 6 figures), 8 additional JPEG figures. Accepted
for publication in ApJ. For full resolution images, see
http://cfa-www.harvard.edu/~rmcgary/SGRA/nh3_figures.htm
Deflections in Magnet Fringe Fields
A transverse multipole expansion is derived, including the longitudinal
components necessarily present in regions of varying magnetic field profile. It
can be used for exact numerical orbit following through the fringe field
regions of magnets whose end designs introduce no extraneous components, {\it
i.e.} fields not required to be present by Maxwell's equations. Analytic
evaluations of the deflections are obtained in various approximations. Mainly
emphasized is a ``straight-line approximation'', in which particle orbits are
treated as straight lines through the fringe field regions. This approximation
leads to a readily-evaluated figure of merit, the ratio of r.m.s. end
deflection to nominal body deflection, that can be used to determine whether or
not a fringe field can be neglected. Deflections in ``critical'' cases (e.g.
near intersection regions) are analysed in the same approximation.Comment: To be published in Physical Review
The ortho-to-para ratio of ammonia in the L1157 outflow
We have measured the ortho-to-para ratio of ammonia in the blueshifted gas of
the L1157 outflow by observing the six metastable inversion lines from (J, K) =
(1, 1) to (6, 6). The highly excited (5, 5) and (6, 6) lines were first
detected in the low-mass star forming regions. The rotational temperature
derived from the ratio of four transition lines from (3, 3) to (6, 6) is
130-140 K, suggesting that the blueshifted gas is heated by a factor of ~10 as
compared to the quiescent gas. The ortho-to-para ratio of the NH3 molecules in
the blueshifted gas is estimated to be 1.3--1.7, which is higher than the
statistical equilibrium value. This ratio provides us with evidence that the
NH3 molecules have been evaporated from dust grains with the formation
temperature between 18 and 25 K. It is most likely that the NH3 molecules on
dust grains have been released into the gas phase through the passage of strong
shock waves produced by the outflow. Such a scenario is supported by the fact
that the ammonia abundance in the blueshifted gas is enhanced by a factor of ~5
with respect to the dense quiescent gas.Comment: 16 pages, including 3 PS figures. To appear in the ApJ (Letters).
aastex macro
The Nature of the Molecular Environment within 5 pc of the Galactic Center
We present a detailed study of molecular gas in the central 10pc of the
Galaxy through spectral line observations of four rotation inversion
transitions of NH3 made with the VLA. Updated line widths and NH3(1,1)
opacities are presented, and temperatures, column densities, and masses are
derived. We examine the impact of Sgr A East on molecular material at the
Galactic center and find that there is no evidence that the expansion of this
shell has moved a significant amount of the 50 km/s GMC. The western streamer,
however, shows strong indications that it is composed of material swept-up by
the expansion of Sgr A East. Using the mass and kinematics of the western
streamer, we calculate an energy of E=(2-9)x10^{51} ergs for the progenitor
explosion and conclude that Sgr A East was most likely produced by a single
supernova. The temperature structure of molecular gas in the central ~20pc is
also analyzed in detail. We find that molecular gas has a ``two-temperature''
structure similar to that measured by Huttemeister et al. (2003a) on larger
scales. The largest observed line ratios, however, cannot be understood in
terms of a two-temperature model, and most likely result from absorption of
NH3(3,3) emission by cool surface layers of clouds. By comparing the observed
NH3 (6,6)-to-(3,3) line ratios, we disentangle three distinct molecular
features within a projected distance of 2pc from Sgr A*. Gas associated with
the highest line ratios shows kinematic signatures of both rotation and
expansion. The southern streamer shows no significant velocity gradients and
does not appear to be directly associated with either the circumnuclear disk or
the nucleus. The paper concludes with a discussion of the line-of-sight
arrangement of the main features in the central 10pc.Comment: 51 pages, 16 figures, accepted for publication in ApJ. Due to size
limitations, some of the images have been cut from this version. A complete,
color PS or PDF version can be downloaded from
http://www.astro.columbia.edu/~herrnstein/NH3/paper
Tentative detection of phosphine in IRC+10216
The J,K = 1,0-0,0 rotational transition of phosphine (PH3) at 267 GHz has
been tentatively identified with a T_MB = 40 mK spectral line observed with the
IRAM 30-m telescope in the C-star envelope IRC+10216. A radiative transfer
model has been used to fit the observed line profile. The derived PH3 abundance
relative to H2 is 6 x 10^(-9), although it may have a large uncertainty due to
the lack of knowledge about the spatial distribution of this species. If our
identification is correct, it implies that PH3 has a similar abundance to that
reported for HCP in this source, and that these two molecules (HCP and PH3)
together take up about 5 % of phosphorus in IRC+10216. The abundance of PH3, as
that of other hydrides in this source, is not well explained by conventional
gas phase LTE and non-LTE chemical models, and may imply formation on grain
surfaces.Comment: 4 pages, 2 figures; accepted for publication in A&A Letter
- …
