890 research outputs found
Early treatment of posterior crossbite - a randomised clinical trial
Background: The aim of this randomised clinical trial was to assess the effect of early orthodontic treatment in contrast to normal growth effects for functional unilateral posterior crossbite in the late deciduous and early mixed dentition by means of three-dimensional digital model analysis.
Methods: This randomised clinical trial was assessed to analyse the orthodontic treatment effects for patients with functional unilateral posterior crossbite in the late deciduous and early mixed dentition using a two-step procedure: initial maxillary expansion followed by a U-bow activator therapy. In the treatment group 31 patients and in the control group 35 patients with a mean age of 7.3 years (SD 2.1) were monitored. The time between the initial assessment (T1) and the follow-up (T2) was one year. The orthodontic analysis was done by a three-dimensional digital model analysis. Using the ‘Digimodel’ software, the orthodontic measurements in the maxilla and mandible and for the midline deviation, the overjet and overbite were recorded.
Results: Significant differences between the control and the therapy group at T2 were detected for the anterior, median and posterior transversal dimensions of the maxilla, the palatal depth, the palatal base arch length, the maxillary arch length and inclination, the midline deviation, the overjet and the overbite.
Conclusions: Orthodontic treatment of a functional unilateral posterior crossbite with a bonded maxillary expansion device followed by U-bow activator therapy in the late deciduous and early mixed dentition is an effective therapeutic method, as evidenced by the results of this RCT. It leads to three-dimensional therapeutically induced maxillary growth effects. Dental occlusion is significantly improved, and the prognosis for normal craniofacial growth is enhanced
Eye movements in mild traumatic brain injury: Clinical challenges
Mild traumatic brain injury (mTBI), also known as concussion, is a common injury which affects patients of all demographics. There is a global effort to accurately diagnose and identify patients at highest risk of prolonged symptom burden to facilitate appropriate rehabilitation efforts. Underreporting is common with large numbers not engaging with services, in addition to differences in treatment outcomes according to ethnicity, age, and gender. As patients recover, symptomology evolves which challenges rehabilitative efforts with no clear definition of ‘recovered’. This review describes key areas in mTBI such as diagnostic challenges, epidemiology, prognosis, and pathophysiology which serves as an introduction to “Eye Movements in Mild Traumatic Brain Injury: Ocular Biomarkers.
Eye movements in mild traumatic brain injury: Ocular biomarkers
Mild traumatic brain injury (mTBI, or concussion), results from direct and indirect trauma to the head (i.e. a closed injury of transmitted forces), with or without loss of consciousness. The current method of diagnosis is largely based on symptom assessment and clinical history. There is an urgent need to identify an objective biomarker which can not only detect injury, but inform prognosis and recovery. Ocular motor impairment is argued to be ubiquitous across mTBI subtypes and may serve as a valuable clinical biomarker with the recent advent of more affordable and portable eye tracking technology. Many groups have positively correlated the degree of ocular motor impairment to symptom severity with a minority attempting to validate these findings with diffusion tract imaging and functional MRI. However, numerous methodological issues limit the interpretation of results, preventing any singular ocular biomarker from prevailing. This review will comprehensively describe the anatomical susceptibility, clinical measurement, and current eye tracking literature surrounding saccades, smooth pursuit, vestibulo-ocular reflex, vergence, pupillary light reflex, and accommodation in mTBI
A review of neuro-ophthalmic sequelae following COVID-19 infection and vaccination
BackgroundIt has become increasingly clear that the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can affect most organs in the human body, including the neurologic and ophthalmic systems. Vaccination campaigns have been developed at rapid pace around the world to protect the population from the fast-mutating virus. This review seeks to summarise current knowledge of the neuro-ophthalmic manifestations of both COVID-19 infection and vaccination.Evidence acquisitionElectronic searches for published literature were conducted using EMBASE and MEDLINE on the 30th of July 2023. The search strategy comprised of controlled vocabulary and free-text synonyms for the following terms in various combinations: “coronavirus, COVID-19, SARS-CoV-2, 2019-nCoV, vaccination, vaccine, immunisation and neuro-ophthalmology”. No time range limits were set for the literature search. Published English abstracts for articles written in a different language were screened if available.ResultsA total of 54 case reports and case series were selected for use in the final report. 34 articles documenting neuro-ophthalmic manifestations following COVID-19 infection and 20 articles with neuro-ophthalmic complications following COVID-19 vaccination were included, comprising of 79 patients in total. The most commonly occurring condition was optic neuritis, with 25 cases following COVID-19 infection and 27 cases following vaccination against COVID-19.ConclusionsThe various COVID-19 vaccines that are currently available are part of the global effort to protect the most vulnerable of the human population. The incidence of neuro-ophthalmic consequences following infection with COVID-19 is hundred-folds higher and associated with more harrowing systemic effects than vaccination against the virus
Application of advanced diffusion MRI based tractometry of the visual pathway in glaucoma: a systematic review
BackgroundGlaucoma is a leading cause of blindness globally, with emerging research suggesting that glaucoma-related degeneration may affect the visual pathway. Recent advancements in magnetic resonance imaging (MRI) offer promising non-invasive methods for evaluating glaucoma, including advanced diffusion MRI (dMRI) and computational techniques. One such technique is tractometry, which quantifies white matter (WM) microstructural properties. While the application of tractometry in glaucomatous patients is developing, several key studies have explored structural changes in the brain, particularly within the visual pathways, in individuals with glaucoma. This systematic review comprehensively evaluates the application of tractometry using advanced dMRI models and techniques to quantify WM in the visual pathway of individuals with glaucoma.MethodsPubMed-Medline and PubMed-Central were screened for articles published until April 11th, 2024. The studies based on patient cohorts affected by primary open-angle glaucoma (POAG), primary angle closure glaucoma (PACG), and normal tension glaucoma (NTG) with the following dMRI techniques and tract-specific analysis approach were included in this review: diffusion tensor imaging (DTI), diffusion kurtosis imaging (DKI), neurite orientation dispersion and density imaging (NODDI), fixel-based analysis (FBA), and dMRI tractometry.ResultsThe selected seven studies incorporate tractometry and advanced diffusion models and techniques (DKI, NODDI and FBA), including DTI. Each study investigated microstructural changes along the visual pathway of glaucomatous patients, finding glaucomatous WM degeneration in the optic nerve (ON), optic tract (OT), and optic radiation (OR), as well as significantly altered WM connections between the brain's visual cortex and non-visual areas. Additionally, tractometric findings correlated with clinical measures of glaucoma, such as intraocular pressure, visual field loss, and retinal nerve fiber layer thickness, indicating the potential that changes in tractometric parameters could provide a complementary marker of the disease.ConclusionsThis review enhances our understanding of WM changes in glaucoma and highlights the potential for dMRI tractometry as a promising tool for early detection and monitoring of the disease. By quantifying WM changes, tractometry offers valuable insights not only into the visual pathway but also into brain regions affected by glaucoma. This could lead to more accurate diagnoses, improved tracking of disease progression, and the development of targeted treatment strategies
Digital subtraction radiographic analysis of the combination of bioabsorbable membrane and bovine morphogenetic protein pool in human periodontal infrabony defects
Objectives: This study assessed the bone density gain and its relationship with the
periodontal clinical parameters in a case series of a regenerative therapy procedure.
Material and Methods: Using a split-mouth study design, 10 pairs of infrabony defects from
15 patients were treated with a pool of bovine bone morphogenetic proteins associated with
collagen membrane (test sites) or collagen membrane only (control sites). The periodontal
healing was clinically and radiographically monitored for six months. Standardized presurgical
and 6-month postoperative radiographs were digitized for digital subtraction
analysis, which showed relative bone density gain in both groups of 0.034 ± 0.423 and
0.105 ± 0.423 in the test and control group, respectively (p>0.05). Results: As regards the
area size of bone density change, the influence of the therapy was detected in 2.5 mm2 in
the test group and 2 mm2 in the control group (p>0.05). Additionally, no correlation was
observed between the favorable clinical results and the bone density gain measured by
digital subtraction radiography (p>0.05). Conclusions: The findings of this study suggest
that the clinical benefit of the regenerative therapy observed did not come with significant
bone density gains. Long-term evaluation may lead to a different conclusions
Ophthalmic Artery Obstruction and Cerebral Infarction Following Periocular Injection of Autologous Fat
We report a case of ophthalmic artery obstruction combined with brain infarction following periocular autologous fat injection. The patient, a 44-year-old woman, visited our hospital for decreased visual acuity in her left eye and dysarthria one hour after receiving an autologous fat injection in the periocular area. Her best corrected visual acuity for the concerned eye was no light perception. Also, a relative afferent pupillary defect was detected in this eye. The left fundus exhibited widespread retinal whitening with visible emboli in several retinal arterioles. Diffusion-weighted magnetic resonance imaging of the brain showed a hyperintense lesion at the left insular cortex. Therefore, we diagnosed ophthalmic artery obstruction and left middle cerebral artery infarction due to fat emboli. The patient was managed with immediate ocular massage, carbon dioxide, and oxygen therapy. Following treatment, dysarthria improved considerably but there was no improvement in visual acuity
Alzheimer's Disease: a Review of its Visual System Neuropathology. Optical Coherence Tomography-a Potential Role As a Study Tool in Vivo
Alzheimer's disease (AD) is a prevalent, long-term progressive degenerative disorder with great social impact. It is currently thought that, in addition to neurodegeneration, vascular changes also play a role in the pathophysiology of the disease. Visual symptoms are frequent and are an early clinical manifestation; a number of psychophysiologic changes occur in visual function, including visual field defects, abnormal contrast sensitivity, abnormalities in color vision, depth perception deficits, and motion detection abnormalities. These visual changes were initially believed to be solely due to neurodegeneration in the posterior visual pathway. However, evidence from pathology studies in both animal models of AD and humans has demonstrated that neurodegeneration also takes place in the anterior visual pathway, with involvement of the retinal ganglion cells' (RGCs) dendrites, somata, and axons in the optic nerve. These studies additionally showed that patients with AD have changes in retinal and choroidal microvasculature. Pathology findings have been corroborated in in-vivo assessment of the retina and optic nerve head (ONH), as well as the retinal and choroidal vasculature. Optical coherence tomography (OCT) in particular has shown great utility in the assessment of these changes, and it may become a useful tool for early detection and monitoring disease progression in AD. The authors make a review of the current understanding of retinal and choroidal pathological changes in patients with AD, with particular focus on in-vivo evidence of retinal and choroidal neurodegenerative and microvascular changes using OCT technology.info:eu-repo/semantics/publishedVersio
The Role of Ultrasound Compared to Biopsy of Temporal Arteries in the Diagnosis and Treatment of Giant Cell Arteritis (TABUL): a diagnostic accuracy and cost-effectiveness study
Background: Giant cell arteritis (GCA) is a relatively common form of primary systemic vasculitis, which, if left untreated, can lead to permanent sight loss. We compared ultrasound as an alternative diagnostic test with temporal artery biopsy, which may be negative in 9–61% of true cases.
Objective: To compare the clinical effectiveness and cost-effectiveness of ultrasound with biopsy in diagnosing patients with suspected GCA.
Design: Prospective multicentre cohort study.
Setting: Secondary care.
Participants: A total of 381 patients referred with newly suspected GCA.
Main outcome measures: Sensitivity, specificity and cost-effectiveness of ultrasound compared with biopsy or ultrasound combined with biopsy for diagnosing GCA and interobserver reliability in interpreting scan or biopsy findings.
Results: We developed and implemented an ultrasound training programme for diagnosing suspected GCA. We recruited 430 patients with suspected GCA. We analysed 381 patients who underwent both ultrasound and biopsy within 10 days of starting treatment for suspected GCA and who attended a follow-up assessment (median age 71.1 years; 72% female). The sensitivity of biopsy was 39% [95% confidence interval (CI) 33% to 46%], which was significantly lower than previously reported and inferior to ultrasound (54%, 95% CI 48% to 60%); the specificity of biopsy (100%, 95% CI 97% to 100%) was superior to ultrasound (81%, 95% CI 73% to 88%). If we scanned all suspected patients and performed biopsies only on negative cases, sensitivity increased to 65% and specificity was maintained at 81%, reducing the need for biopsies by 43%. Strategies combining clinical judgement (clinician’s assessment at 2 weeks) with the tests showed sensitivity and specificity of 91% and 81%, respectively, for biopsy and 93% and 77%, respectively, for ultrasound; cost-effectiveness (incremental net monetary benefit) was £485 per patient in favour of ultrasound with both cost savings and a small health gain. Inter-rater analysis revealed moderate agreement among sonographers (intraclass correlation coefficient 0.61, 95% CI 0.48 to 0.75), similar to pathologists (0.62, 95% CI 0.49 to 0.76).
Limitations: There is no independent gold standard diagnosis for GCA. The reference diagnosis used to determine accuracy was based on classification criteria for GCA that include clinical features at presentation and biopsy results.
Conclusion: We have demonstrated the feasibility of providing training in ultrasound for the diagnosis of GCA. Our results indicate better sensitivity but poorer specificity of ultrasound compared with biopsy and suggest some scope for reducing the role of biopsy. The moderate interobserver agreement for both ultrasound and biopsy indicates scope for improving assessment and reporting of test results and challenges the assumption that a positive biopsy always represents GCA.
Future work: Further research should address the issue of an independent reference diagnosis, standards for interpreting and reporting test results and the evaluation of ultrasound training, and should also explore the acceptability of these new diagnostic strategies in GCA.
Funding: he National Institute for Health Research Health Technology Assessment programme
Functional effects of unilateral open-angle glaucoma on the primary and extrastriate visual cortex
- …
