907 research outputs found

    Traveling waves of excitation in neural field models

    Get PDF
    Field models provide an elegant mathematical framework to analyze large-scale patterns of neural activity. On the microscopic level, these models are usually based on either a firing-rate picture or integrate-and-fire dynamics. This article shows that in spite of the large conceptual differences between the two types of dynamics, both generate closely related plane-wave solutions. Furthermore, for a large group of models, estimates about the network connectivity derived from the speed of these plane waves only marginally depend on the assumed class of microscopic dynamics. We derive quantitative results about this phenomenon and discuss consequences for the interpretation of experimental data

    Point-wise Map Recovery and Refinement from Functional Correspondence

    Get PDF
    Since their introduction in the shape analysis community, functional maps have met with considerable success due to their ability to compactly represent dense correspondences between deformable shapes, with applications ranging from shape matching and image segmentation, to exploration of large shape collections. Despite the numerous advantages of such representation, however, the problem of converting a given functional map back to a point-to-point map has received a surprisingly limited interest. In this paper we analyze the general problem of point-wise map recovery from arbitrary functional maps. In doing so, we rule out many of the assumptions required by the currently established approach -- most notably, the limiting requirement of the input shapes being nearly-isometric. We devise an efficient recovery process based on a simple probabilistic model. Experiments confirm that this approach achieves remarkable accuracy improvements in very challenging cases

    Efficient Online Surface Correction for Real-time Large-Scale 3D Reconstruction

    Full text link
    State-of-the-art methods for large-scale 3D reconstruction from RGB-D sensors usually reduce drift in camera tracking by globally optimizing the estimated camera poses in real-time without simultaneously updating the reconstructed surface on pose changes. We propose an efficient on-the-fly surface correction method for globally consistent dense 3D reconstruction of large-scale scenes. Our approach uses a dense Visual RGB-D SLAM system that estimates the camera motion in real-time on a CPU and refines it in a global pose graph optimization. Consecutive RGB-D frames are locally fused into keyframes, which are incorporated into a sparse voxel hashed Signed Distance Field (SDF) on the GPU. On pose graph updates, the SDF volume is corrected on-the-fly using a novel keyframe re-integration strategy with reduced GPU-host streaming. We demonstrate in an extensive quantitative evaluation that our method is up to 93% more runtime efficient compared to the state-of-the-art and requires significantly less memory, with only negligible loss of surface quality. Overall, our system requires only a single GPU and allows for real-time surface correction of large environments.Comment: British Machine Vision Conference (BMVC), London, September 201
    corecore