884 research outputs found
Ultrahigh precision cosmology from gravitational waves
We show that the Big Bang Observer (BBO), a proposed space-based gravitational-wave (GW) detector, would provide ultraprecise measurements of cosmological parameters. By detecting ∼3×10^5 compact-star binaries, and utilizing them as standard sirens, BBO would determine the Hubble constant to ∼0.1%, and the dark-energy parameters w_0 and w_a to ∼0.01 and ∼0.1, respectively. BBO’s dark-energy figure-of-merit would be approximately an order of magnitude better than all other proposed, dedicated dark-energy missions. To date, BBO has been designed with the primary goal of searching for gravitational waves from inflation, down to the level Ω_(GW)∼10^(-17); this requirement determines BBO’s frequency band (deci-Hz) and its sensitivity requirement (strain measured to ∼10^(-24)). To observe an inflationary GW background, BBO would first have to detect and subtract out ∼3×10^5 merging compact-star binaries, out to a redshift z ∼ 5. It is precisely this carefully measured foreground which would enable high-precision cosmology. BBO would determine the luminosity distance to each binary to ∼ percent accuracy. In addition, BBO’s angular resolution would be sufficient to uniquely identify the host galaxy for the majority of binaries; a coordinated optical/infrared observing campaign could obtain the redshifts. Combining the GW-derived distances and the electromagnetically-derived redshifts for such a large sample of objects, out to such high redshift, naturally leads to extraordinarily tight constraints on cosmological parameters. We emphasize that such “standard siren” measurements of cosmology avoid many of the systematic errors associated with other techniques: GWs offer a physics-based, absolute measurement of distance. In addition, we show that BBO would also serve as an exceptionally powerful gravitational-lensing mission, and we briefly discuss other astronomical uses of BBO, including providing an early warning system for all short/hard gamma-ray bursts
Reducing the weak lensing noise for the gravitational wave Hubble diagram using the non-Gaussianity of the magnification distribution
Gravitational wave sources are a promising cosmological standard candle
because their intrinsic luminosities are determined by fundamental physics (and
are insensitive to dust extinction). They are, however, affected by weak
lensing magnification due to the gravitational lensing from structures along
the line of sight. This lensing is a source of uncertainty in the distance
determination, even in the limit of perfect standard candle measurements. It is
commonly believed that the uncertainty in the distance to an ensemble of
gravitational wave sources is limited by the standard deviation of the lensing
magnification distribution divided by the square root of the number of sources.
Here we show that by exploiting the non-Gaussian nature of the lensing
magnification distribution, we can improve this distance determination,
typically by a factor of 2--3; we provide a fitting formula for the effective
distance accuracy as a function of redshift for sources where the lensing noise
dominates.Comment: matches PRD accepted version (expanded description of the
cosmological parameter space + minor changes
Progressive neurodegeneration following spinal cord injury: Implications for clinical trials.
OBJECTIVE: To quantify atrophy, demyelination, and iron accumulation over 2 years following acute spinal cord injury and to identify MRI predictors of clinical outcomes and determine their suitability as surrogate markers of therapeutic intervention. METHODS: We assessed 156 quantitative MRI datasets from 15 patients with spinal cord injury and 18 controls at baseline and 2, 6, 12, and 24 months after injury. Clinical recovery (including neuropathic pain) was assessed at each time point. Between-group differences in linear and nonlinear trajectories of volume, myelin, and iron change were estimated. Structural changes by 6 months were used to predict clinical outcomes at 2 years. RESULTS: The majority of patients showed clinical improvement with recovery stabilizing at 2 years. Cord atrophy decelerated, while cortical white and gray matter atrophy progressed over 2 years. Myelin content in the spinal cord and cortex decreased progressively over time, while cerebellar loss decreases decelerated. As atrophy progressed in the thalamus, sustained iron accumulation was evident. Smaller cord and cranial corticospinal tract atrophy, and myelin changes within the sensorimotor cortices, by 6 months predicted recovery in lower extremity motor score at 2 years. Whereas greater cord atrophy and microstructural changes in the cerebellum, anterior cingulate cortex, and secondary sensory cortex by 6 months predicted worse sensory impairment and greater neuropathic pain intensity at 2 years. CONCLUSION: These results draw attention to trauma-induced neuroplastic processes and highlight the intimate relationships among neurodegenerative processes in the cord and brain. These measurable changes are sufficiently large, systematic, and predictive to render them viable outcome measures for clinical trials
Individual or Shared Identity? Perceptions of School Climate in Catholic Schools by Ethnic Background
School climate has been routinely associated with positive student outcomes. Scholars have found that Catholic schools promote positive school climate by emphasizing shared identity and values. However, others argue that this approach serves the interests of dominant groups, producing poor school climates for minority students. To explore these claims, this study examined perceived school climate among students (n = 22,286) and parents (n = 12,997) in Catholic schools with different racial/ethnic compositions. Results indicated that students attending majority-minority (50%\u3e and 90%\u3e) and Hispanic-serving Catholic schools report similarly to their peers attending less diverse Catholic schools. Results from parents largely echoed those of students. This study raises important questions about the potential to improve school climate for minority students by emphasizing shared identity and values in schools
First report of Fusarium verticillioides causing stalk and root rot of sorghum in Spain
Podredumbre del tallo y la raíz del sorgo causada por Fusarium verticillioides en Españ
Solidarity in the neighbourhood, social support at work and psychosomatic health problems
Aims: The aim of this study was to analyse the link between psychosocial factors in the neighbourhood and work environments, and psychosomatic health problems. Methods: The data were collected in the survey 'Life and Health', which was conducted in 2000 in six Swedish county councils. A total of 71,580 questionnaires were distributed to randomly selected individuals aged 18-79. A total of 46,636 respondents completed the questionnaire. This gives a response rate of around 65%. For the purpose of this study only gainfully employed individuals aged 18-64 are included, which gives a total of 22,164 individuals: 11,247 (50.7%) women and 10,917 (49.3%) men. Two scales were used to measure the psychosocial environments in the neighbourhood and at work. The link between these scales and psychosomatic health problems was analysed by using multinomial logistic regression. Results: The results show that both 'Psychosocial Neighbourhood Environment' (PNE) and 'Psychosocial Working Environment' (PWE), independently, are related to psychosomatic health problems. Hence, the health effects of social relations in the neighbourhood were not modified by the quality of social relations at work, or vice versa. The levels of psychosomatic health problems are highest for people experiencing a low degree of social solidarity in the neighbourhood and for those experiencing low degrees of supportive work relationships. Conclusion: The strong, but independent, effects of social factors related to the neighbourhood and to the workplace on psychosomatic health problems point to the importance of simultaneously considering social relations in different arenas in order to increase the knowledge of the connection between social relations and health
Multicenter clinical assessment of improved wearable multimodal convulsive seizure detectors
Objective
New devices are needed for monitoring seizures, especially those associated with sudden unexpected death in epilepsy (SUDEP). They must be unobtrusive and automated, and provide false alarm rates (FARs) bearable in everyday life. This study quantifies the performance of new multimodal wrist-worn convulsive seizure detectors.
Methods
Hand-annotated video-electroencephalographic seizure events were collected from 69 patients at six clinical sites. Three different wristbands were used to record electrodermal activity (EDA) and accelerometer (ACM) signals, obtaining 5,928 h of data, including 55 convulsive epileptic seizures (six focal tonic–clonic seizures and 49 focal to bilateral tonic–clonic seizures) from 22 patients. Recordings were analyzed offline to train and test two new machine learning classifiers and a published classifier based on EDA and ACM. Moreover, wristband data were analyzed to estimate seizure-motion duration and autonomic responses.
Results
The two novel classifiers consistently outperformed the previous detector. The most efficient (Classifier III) yielded sensitivity of 94.55%, and an FAR of 0.2 events/day. No nocturnal seizures were missed. Most patients had <1 false alarm every 4 days, with an FAR below their seizure frequency. When increasing the sensitivity to 100% (no missed seizures), the FAR is up to 13 times lower than with the previous detector. Furthermore, all detections occurred before the seizure ended, providing reasonable latency (median = 29.3 s, range = 14.8–151 s). Automatically estimated seizure durations were correlated with true durations, enabling reliable annotations. Finally, EDA measurements confirmed the presence of postictal autonomic dysfunction, exhibiting a significant rise in 73% of the convulsive seizures.
Significance
The proposed multimodal wrist-worn convulsive seizure detectors provide seizure counts that are more accurate than previous automated detectors and typical patient self-reports, while maintaining a tolerable FAR for ambulatory monitoring. Furthermore, the multimodal system provides an objective description of motor behavior and autonomic dysfunction, aimed at enriching seizure characterization, with potential utility for SUDEP warning
A Survey of Air-to-Ground Propagation Channel Modeling for Unmanned Aerial Vehicles
In recent years, there has been a dramatic increase in the use of unmanned
aerial vehicles (UAVs), particularly for small UAVs, due to their affordable
prices, ease of availability, and ease of operability. Existing and future
applications of UAVs include remote surveillance and monitoring, relief
operations, package delivery, and communication backhaul infrastructure.
Additionally, UAVs are envisioned as an important component of 5G wireless
technology and beyond. The unique application scenarios for UAVs necessitate
accurate air-to-ground (AG) propagation channel models for designing and
evaluating UAV communication links for control/non-payload as well as payload
data transmissions. These AG propagation models have not been investigated in
detail when compared to terrestrial propagation models. In this paper, a
comprehensive survey is provided on available AG channel measurement campaigns,
large and small scale fading channel models, their limitations, and future
research directions for UAV communication scenarios
Association of Accelerometry-Measured Physical Activity and Cardiovascular Events in Mobility-Limited Older Adults: The LIFE (Lifestyle Interventions and Independence for Elders) Study.
BACKGROUND:Data are sparse regarding the value of physical activity (PA) surveillance among older adults-particularly among those with mobility limitations. The objective of this study was to examine longitudinal associations between objectively measured daily PA and the incidence of cardiovascular events among older adults in the LIFE (Lifestyle Interventions and Independence for Elders) study. METHODS AND RESULTS:Cardiovascular events were adjudicated based on medical records review, and cardiovascular risk factors were controlled for in the analysis. Home-based activity data were collected by hip-worn accelerometers at baseline and at 6, 12, and 24 months postrandomization to either a physical activity or health education intervention. LIFE study participants (n=1590; age 78.9±5.2 [SD] years; 67.2% women) at baseline had an 11% lower incidence of experiencing a subsequent cardiovascular event per 500 steps taken per day based on activity data (hazard ratio, 0.89; 95% confidence interval, 0.84-0.96; P=0.001). At baseline, every 30 minutes spent performing activities ≥500 counts per minute (hazard ratio, 0.75; confidence interval, 0.65-0.89 [P=0.001]) were also associated with a lower incidence of cardiovascular events. Throughout follow-up (6, 12, and 24 months), both the number of steps per day (per 500 steps; hazard ratio, 0.90, confidence interval, 0.85-0.96 [P=0.001]) and duration of activity ≥500 counts per minute (per 30 minutes; hazard ratio, 0.76; confidence interval, 0.63-0.90 [P=0.002]) were significantly associated with lower cardiovascular event rates. CONCLUSIONS:Objective measurements of physical activity via accelerometry were associated with cardiovascular events among older adults with limited mobility (summary score >10 on the Short Physical Performance Battery) both using baseline and longitudinal data. CLINICAL TRIAL REGISTRATION:URL: http://www.clinicaltrials.gov. Unique identifier: NCT01072500
Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context
Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
- …
