75 research outputs found
Metal–Support Interactions in Heterogeneous Catalysis: DFT Calculations on the Interaction of Copper Nanoparticles with Magnesium Oxide
Oxide supports play an important role in enhancing the catalytic properties of transition metal nanoparticles in heterogeneous catalysis. How extensively interactions between the oxide support and the nanoparticles impact the electronic structure as well as the surface properties of the nanoparticles is hence of high interest. In this study, the influence of a magnesium oxide support on the properties of copper nanoparticles with different size, shape, and adsorption sites is investigated using density functional theory (DFT) calculations. By proposing simple models to reduce the cost of the calculations while maintaining the accuracy of the results, we show using the nonreducible oxide support MgO as an example that there is no significant influence of the MgO support on the electronic structure of the copper nanoparticles, with the exception of adsorption directly at the Cu–MgO interface. We also propose a simplified methodology that allows us to reduce the cost of the calculations, while the accuracy of the results is maintained. We demonstrate in addition that the Cu nanowire model corresponds well to the nanoparticle model, which reduces the computational cost even further
Theoretical Investigation of the Size Effect on the Oxygen Adsorption Energy of Coinage Metal Nanoparticles
This study evaluates the finite size effect on the oxygen adsorption energy of coinage metal (Cu, Ag and Au) cuboctahedral nanoparticles in the size range of 13 to 1415 atoms (0.7–3.5\ua0nm in diameter). Trends in particle size effects are well described with single point calculations, in which the metal atoms are frozen in their bulk position and the oxygen atom is added in a location determined from periodic surface calculations. This is shown explicitly for Cu nanoparticles, for which full geometry optimization only leads to a constant offset between relaxed and unrelaxed adsorption energies that is independent of particle size. With increasing cluster size, the adsorption energy converges systematically to the limit of the (211) extended surface. The 55-atomic cluster is an outlier for all of the coinage metals and all three materials show similar behavior with respect to particle size
A machine learning approach to graph-theoretical cluster expansions of the energy of adsorbate layers
Adsorption of carbon monoxide on Pt{100} surfaces: dependence of the CO stretching vibrational frequency on surface coverage
Ab initio cluster model study of electric field effects for terminal and bridge bonded CO on Pt(100)
Ab Initio Cluster Model Study of the Chemisorption of CO on Low-Index Platinum Surfaces
Adsorption and dissociation of CO on body-centered cubic transition metals and alloys: Effect of coverage and scaling relations
The adsorption and dissociation of CO have been calculated on the (100) surfaces of the body-centered cubic transition metals Fe, Mo, Cr, and W and the alloys Fe3Mo and Fe3Cr using density functional theory for two CO coverages, 0.25 and 0.5 ML. A complete analysis of the vibrational frequencies was performed to check whether the calculated structures are stable geometries or transition-state structures. For coverages up to 0.25 ML, carbon monoxide adsorbs molecularly onto all four metals at fourfold hollow sites with tilting angles with respect to the surface normal of 47°, 57°, 57°, and 58° and adsorption energies of -1.53, -2.64, -3.03, and -3.01 eV for Fe, Mo, Cr, and W, respectively. The calculated CO stretching frequencies at this coverage are 1211, 1062, 1037, and 926 cm-1. At higher coverages, CO adsorption does not exhibit significant changes in both adsorption energy and tilting angle on all four metals but leads to blue shifts of the CO frequency for Fe and Cr and red shifts for Mo and W. Furthermore, scaling relations apply to a bent CO species at a surface coverage of 0.25 ML of CO on all four transition metals as well as the metal alloys Fe3Mo and Fe3Cr, in the sense that the heat of adsorption of CO and the activation energy of CO dissociation scale linearly with the heat of adsorption of the carbon as well as both dissociation products. © 2009 American Chemical Society
Electric field effects on the vibrational frequency and bonding mechanism of CO on Pt(111)
Testing the pairwise additive potential approximation using DFT: coadsorption of CO and N on Rh(100)
The interaction between adsorbates is a key issue in surface science, because these interactions can influence strongly the properties of chemisorbed species with consequences for the thermodn. and kinetics of surface processes. The simplest representation of adsorbate-adsorbate interactions is based on the assumption that all interactions are pairwise additive. This approach has been satisfactorily used in the modeling of temp.-programmed desorption (TPD) spectra using both continuum and Monte Carlo methods. However, the energies estd. within the pairwise approxn. have never been compared to the energies calcd. using d. functional theory (DFT) methods. We demonstrate that the pairwise additive potential approxn. is indeed a good representation of the adsorbate-adsorbate interactions, and that we do not need to include three-body interactions or higher-order terms to est. the perturbation of the adsorption energy of an adsorbate by the presence of other coadsorbates. Moreover, we show for the first time how DFT can be used to explain the desorption features that one finds in TPD expts., thus linking the TPD desorption features with actual microscopic configurations. [on SciFinder (R)
- …
