4,083 research outputs found
Semiclassical Stability of the Extreme Reissner-Nordstrom Black Hole
The stress-energy tensor of a free quantized scalar field is calculated in
the extreme Reissner-Nordstr\"{o}m black hole spacetime in the zero temperature
vacuum state. The stress-energy appears to be regular on the event horizon,
contrary to the suggestion provided by two-dimensional calculations. An
analytic calculation on the event horizon for a thermal state shows that if the
temperature is nonzero then the stress-energy diverges strongly there.Comment: 10 pages, REVTeX, 4 figures in separate uuencoded compressed fil
An evaluation of the effects of lowering blood alcohol concentration limits for drivers on the rates of road traffic accidents and alcohol consumption: a natural experiment
Background: Drink driving is an important risk factor for road traffic accidents (RTAs), which cause high levels of morbidity and mortality globally. Lowering the permitted blood alcohol concentration (BAC) for drivers is a common public health intervention that is enacted in countries and jurisdictions across the world. In Scotland, on Dec 5, 2014, the BAC limit for drivers was reduced from 0·08 g/dL to 0·05 g/dL. We therefore aimed to evaluate the effects of this change on RTAs and alcohol consumption. Methods: In this natural experiment, we used an observational, comparative interrupted time-series design by use of data on RTAs and alcohol consumption in Scotland (the interventional group) and England and Wales (the control group). We obtained weekly counts of RTAs from police accident records and we estimated weekly off-trade (eg, in supermarkets and convenience stores) and 4-weekly on-trade (eg, in bars and restaurants) alcohol consumption from market research data. We also used data from automated traffic counters as denominators to calculate RTA rates. We estimated the effect of the intervention on RTAs by use of negative binomial panel regression and on alcohol consumption outcomes by use of seasonal autoregressive integrated moving average models. Our primary outcome was weekly rates of RTAs in Scotland, England, and Wales. This study is registered with ISRCTN, number ISRCTN38602189. Findings: We assessed the weekly rate of RTAs and alcohol consumption between Jan 1, 2013, and Dec 31, 2016, before and after the BAC limit came into effect on Dec 5, 2014. After the reduction in BAC limits for drivers in Scotland, we found no significant change in weekly RTA rates after adjustment for seasonality and underlying temporal trend (rate ratio 1·01, 95% CI 0·94–1·08; p=0.77) or after adjustment for seasonality, the underlying temporal trend, and the driver characteristics of age, sex, and socioeconomic deprivation (1·00, 0·96–1·06; p=0·73). Relative to RTAs in England and Wales, where the reduction in BAC limit for drivers did not occur, we found a 7% increase in weekly RTA rates in Scotland after this reduction in BAC limit for drivers (1·07, 1·02–1·13; p=0·007 in the fully-adjusted model). Similar findings were observed for serious or fatal RTAs and single-vehicle night-time RTAs. The change in legislation in Scotland was associated with no change in alcohol consumption, measured by per-capita off-trade sales (−0·3%, −1·7 to 1·1; p=0·71), but a 0·7% decrease in alcohol consumption measured by per-capita on-trade sales (−0·7%, −0·8 to −0·5; p<0·0001). Interpretation: Lowering the driving BAC limit to 0·05 g/dL from 0·08 g/dL in Scotland was not associated with a reduction in RTAs, but this change was associated with a small reduction in per-capita alcohol consumption from on-trade alcohol sales. One plausible explanation is that the legislative change was not suitably enforced—for example with random breath testing measures. Our findings suggest that changing the legal BAC limit for drivers in isolation does not improve RTA outcomes. These findings have significant policy implications internationally as several countries and jurisdictions consider a similar reduction in the BAC limit for drivers
Deep-sea coral evidence for lower Southern Ocean surface nitrate concentrations during the last ice age
The Southern Ocean regulates the ocean’s biological sequestration of CO_2 and is widely suspected to underpin much of the ice age decline in atmospheric CO_2 concentration, but the specific changes in the region are debated. Although more complete drawdown of surface nutrients by phytoplankton during the ice ages is supported by some sediment core-based measurements, the use of different proxies in different regions has precluded a unified view of Southern Ocean biogeochemical change. Here, we report measurements of the ^(15)N/^(14)N of fossil-bound organic matter in the stony deep-sea coral Desmophyllum dianthus, a tool for reconstructing surface ocean nutrient conditions. The central robust observation is of higher ^(15)N/^(14)N across the Southern Ocean during the Last Glacial Maximum (LGM), 18–25 thousand years ago. These data suggest a reduced summer surface nitrate concentration in both the Antarctic and Subantarctic Zones during the LGM, with little surface nitrate transport between them. After the ice age, the increase in Antarctic surface nitrate occurred through the deglaciation and continued in the Holocene. The rise in Subantarctic surface nitrate appears to have had both early deglacial and late deglacial/Holocene components, preliminarily attributed to the end of Subantarctic iron fertilization and increasing nitrate input from the surface Antarctic Zone, respectively
Recommended from our members
The characteristics of cognitive neuroscience tests in a schizophrenia cognition clinical trial: Psychometric properties and correlations with standard measures.
In comparison to batteries of standard neuropsychological tests, cognitive neuroscience tests may offer a more specific assessment of discrete neurobiological processes that may be aberrant in schizophrenia. However, more information regarding psychometric properties and correlations with standard neuropsychological tests and functional measures is warranted to establish their validity as treatment outcome measures. The N-back and AX-Continuous Performance Task (AX-CPT) are two promising cognitive neuroscience tests designed to measure specific components of working memory and contextual processing respectively. In the current study, we report the psychometric properties of multiple outcome measures from these two tests as well as their correlations with standard neuropsychological measures and functional capacity measures. The results suggest that while the AX-CPT and N-back display favorable psychometric properties, they do not exhibit greater sensitivity or specificity with functional measures than standard neurocognitive tests
Intensity of Th and Pa scavenging partitioned by particle chemistry in the North Atlantic Ocean
Author Posting. © The Author(s), 2015. This is the author's version of the work. It is posted here by permission of Elsevier for personal use, not for redistribution. The definitive version was published in Marine Chemistry 170 (2015): 49-60, doi:10.1016/j.marchem.2015.01.006.The natural radionuclides 231Pa and 230Th are incorporated into the marine sediment record by
scavenging, or adsorption to various particle types, via chemical reactions that are not fully
understood. Because these isotopes have potential value in tracing several oceanographic
processes, we investigate the nature of scavenging using trans-Atlantic measurements of
dissolved (<0.45 μm) and particulate (0.8-51 μm) 231Pa and 230Th, together with major particle
composition. We find widespread impact of intense scavenging by authigenic Fe/Mn
(hydr)oxides, in the form of hydrothermal particles emanating from the Mid-Atlantic ridge and
particles resuspended from reducing conditions near the seafloor off the coast of West Africa.
Biogenic opal was not found to be a significant scavenging phase for either element in this
sample set, essentially because of its low abundance and small dynamic range at the studied
sites. Distribution coefficients in shallow (< 200 m) depths are anomalously low which suggests
either the unexpected result of a low scavenging intensity for organic matter or that, in water
masses containing abundant organic-rich particles, a greater percentage of radionuclides exist in
the colloidal or complexed phase. In addition to particle concentration, the oceanic distribution
of particle types likely plays a significant role in the ultimate distribution of sedimentary 230Th
and 231Pa.Cruise management for GA03 was funded by the U. S. National Science Foundation to W.
Jenkins (OCE-0926423), E. Boyle (OCE-0926204), and G. Cutter (OCE-0926092). Radionuclide
studies were supported by NSF (OCE-0927064 to LDEO, OCE-0926860 to WHOI, OCE-
0927757 to URI, and OCE-0927754 to UMN). Additional support came from the European
Research Council (278705) to LFR and the Ford Foundation Predoctoral Fellowship to SMV.
Particle studies were supported by NSF OCE-0963026 to PJL
Vegetation response to invasive Tamarix control in southwestern U.S. rivers: a collaborative study including 416 sites
Most studies assessing vegetation response following control of invasive Tamarix trees along southwestern U.S. rivers have been small in scale (e.g., river reach), or at a regional scale but with poor spatial-temporal replication, and most have not included testing the effects of a now widely used biological control. We monitored plant composition following Tamarix control along hydrologic, soil, and climatic gradients in 244 treated and 172 reference sites across six U.S. states. This represents the largest comprehensive assessment to date on the vegetation response to the four most common Tamarix control treatments. Biocontrol by a defoliating beetle (treatment 1) reduced the abundance of Tamarix less than active removal by mechanically using hand and chain-saws (2), heavy machinery (3) or burning (4). Tamarix abundance also decreased with lower temperatures, higher precipitation, and follow-up treatments for Tamarix resprouting. Native cover generally increased over time in active Tamarix removal sites, however, the increases observed were small and was not consistently increased by active revegetation. Overall, native cover was correlated to permanent stream flow, lower grazing pressure, lower soil salinity and temperatures, and higher precipitation. Species diversity also increased where Tamarix was removed. However, Tamarix treatments, especially those generating the highest disturbance (burning and heavy machinery), also often promoted secondary invasions of exotic forbs. The abundance of hydrophytic species was much lower in treated than in reference sites, suggesting that management of southwestern U.S. rivers has focused too much on weed control, overlooking restoration of fluvial processes that provide habitat for hydrophytic and floodplain vegetation. These results can help inform future management of Tamarix-infested rivers to restore hydrogeomorphic processes, increase native biodiversity and reduce abundance of noxious species
The nuclear receptors of Biomphalaria glabrata and Lottia gigantea: Implications for developing new model organisms
© 2015 Kaur et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedNuclear receptors (NRs) are transcription regulators involved in an array of diverse physiological functions including key roles in endocrine and metabolic function. The aim of this study was to identify nuclear receptors in the fully sequenced genome of the gastropod snail, Biomphalaria glabrata, intermediate host for Schistosoma mansoni and compare these to known vertebrate NRs, with a view to assessing the snail's potential as a invertebrate model organism for endocrine function, both as a prospective new test organism and to elucidate the fundamental genetic and mechanistic causes of disease. For comparative purposes, the genome of a second gastropod, the owl limpet, Lottia gigantea was also investigated for nuclear receptors. Thirty-nine and thirty-three putative NRs were identified from the B. glabrata and L. gigantea genomes respectively, based on the presence of a conserved DNA-binding domain and/or ligand-binding domain. Nuclear receptor transcript expression was confirmed and sequences were subjected to a comparative phylogenetic analysis, which demonstrated that these molluscs have representatives of all the major NR subfamilies (1-6). Many of the identified NRs are conserved between vertebrates and invertebrates, however differences exist, most notably, the absence of receptors of Group 3C, which includes some of the vertebrate endocrine hormone targets. The mollusc genomes also contain NR homologues that are present in insects and nematodes but not in vertebrates, such as Group 1J (HR48/DAF12/HR96). The identification of many shared receptors between humans and molluscs indicates the potential for molluscs as model organisms; however the absence of several steroid hormone receptors indicates snail endocrine systems are fundamentally different.The National Centre for the Replacement, Refinement and Reduction of Animals in Research, Grant Ref:G0900802 to CSJ, LRN, SJ & EJR [www.nc3rs.org.uk]
Chaos in a double driven dissipative nonlinear oscillator
We propose an anharmonic oscillator driven by two periodic forces of
different frequencies as a new time-dependent model for investigating quantum
dissipative chaos. Our analysis is done in the frame of statistical ensemble of
quantum trajectories in quantum state diffusion approach. Quantum dynamical
manifestation of chaotic behavior, including the emergence of chaos, properties
of strange attractors, and quantum entanglement are studied by numerical
simulation of ensemble averaged Wigner function and von Neumann entropy.Comment: 9 pages, 18 figure
Special topic: The association between pulse ingredients and canine dilated cardiomyopathy: addressing the knowledge gaps before establishing causation.
In July 2018, the Food and Drug Administration warned about a possible relationship between dilated cardiomyopathy (DCM) in dogs and the consumption of dog food formulated with potatoes and pulse ingredients. This issue may impede utilization of pulse ingredients in dog food or consideration of alternative proteins. Pulse ingredients have been used in the pet food industry for over 2 decades and represent a valuable source of protein to compliment animal-based ingredients. Moreover, individual ingredients used in commercial foods do not represent the final nutrient concentration of the complete diet. Thus, nutritionists formulating dog food must balance complementary ingredients to fulfill the animal's nutrient needs in the final diet. There are multiple factors that should be considered, including differences in nutrient digestibility and overall bioavailability, the fermentability and quantity of fiber, and interactions among food constituents that can increase the risk of DCM development. Taurine is a dispensable amino acid that has been linked to DCM in dogs. As such, adequate supply of taurine and/or precursors for taurine synthesis plays an important role in preventing DCM. However, requirements of amino acids in dogs are not well investigated and are presented in total dietary content basis which does not account for bioavailability or digestibility. Similarly, any nutrient (e.g., soluble and fermentable fiber) or physiological condition (e.g., size of the dog, sex, and age) that increases the requirement for taurine will also augment the possibility for DCM development. Dog food formulators should have a deep knowledge of processing methodologies and nutrient interactions beyond meeting the Association of American Feed Control Officials nutrient profiles and should not carelessly follow unsubstantiated market trends. Vegetable ingredients, including pulses, are nutritious and can be used in combination with complementary ingredients to meet the nutritional needs of the dog
First Light LBT AO Images of HR 8799 bcde at 1.65 and 3.3 Microns: New Discrepancies between Young Planets and Old Brown Dwarfs
As the only directly imaged multiple planet system, HR 8799 provides a unique
opportunity to study the physical properties of several planets in parallel. In
this paper, we image all four of the HR 8799 planets at H-band and 3.3 microns
with the new LBT adaptive optics system, PISCES, and LBTI/LMIRCam. Our images
offer an unprecedented view of the system, allowing us to obtain H and 3.3$
micron photometry of the innermost planet (for the first time) and put strong
upper-limits on the presence of a hypothetical fifth companion. We find that
all four planets are unexpectedly bright at 3.3 microns compared to the
equilibrium chemistry models used for field brown dwarfs, which predict that
planets should be faint at 3.3 microns due to CH4 opacity. We attempt to model
the planets with thick-cloudy, non-equilibrium chemistry atmospheres, but find
that removing CH4 to fit the 3.3 micron photometry increases the predicted L'
(3.8 microns) flux enough that it is inconsistent with observations. In an
effort to fit the SED of the HR 8799 planets, we construct mixtures of cloudy
atmospheres, which are intended to represent planets covered by clouds of
varying opacity. In this scenario, regions with low opacity look hot and
bright, while regions with high opacity look faint, similar to the patchy cloud
structures on Jupiter and L/T transition brown-dwarfs. Our mixed cloud models
reproduce all of the available data, but self-consistent models are still
necessary to demonstrate their viability.Comment: Accepted to Ap
- …
