175 research outputs found

    Temporal percolation of a susceptible adaptive network

    Get PDF
    In the past decades, many authors have used the susceptible?infected?recovered model to study the impact of the disease spreading on the evolution of the infected individuals. However, few authors focused on the temporal unfolding of the susceptible individuals. In this paper, we study the dynamic of the susceptible-infected-recovered model in an adaptive network that mimics the transitory deactivation of permanent social contacts, such as friendship and work-ship ties. Using an edge-based compartmental model and percolation theory, we obtain the evolution equations for the fraction susceptible individuals in the susceptible biggest component. In particular, we focus on how the individual´s behavior impacts on the dilution of the susceptible network. We show that, as a consequence, the spreading of the disease slows down, protecting the biggest susceptible cluster by increasing the critical time at which the giant susceptible component is destroyed. Our theoretical results are fully supported by extensive simulations.Fil: Valdez, Lucas Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Macri, Pablo Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; ArgentinaFil: Braunstein, L. A.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Mar del Plata. Instituto de Investigaciones Físicas de Mar del Plata; Argentina. Boston University; Estados Unido

    Photometry of Variable Stars from Dome A, Antarctica

    Get PDF
    Dome A on the Antarctic plateau is likely one of the best observing sites on Earth thanks to the excellent atmospheric conditions present at the site during the long polar winter night. We present high-cadence time-series aperture photometry of 10,000 stars with i<14.5 mag located in a 23 square-degree region centered on the south celestial pole. The photometry was obtained with one of the CSTAR telescopes during 128 days of the 2008 Antarctic winter. We used this photometric data set to derive site statistics for Dome A and to search for variable stars. Thanks to the nearly-uninterrupted synoptic coverage, we find 6 times as many variables as previous surveys with similar magnitude limits. We detected 157 variable stars, of which 55% are unclassified, 27% are likely binaries and 17% are likely pulsating stars. The latter category includes delta Scuti, gamma Doradus and RR Lyrae variables. One variable may be a transiting exoplanet.Comment: Accepted for publication in the Astronomical Journal. PDF version with high-resolution figures available at http://faculty.physics.tamu.edu/lmacri/papers/wang11.pd

    A Database of Cepheid Distance Moduli and TRGB, GCLF, PNLF and SBF Data Useful for Distance Determinations

    Full text link
    We present a compilation of Cepheid distance moduli and data for four secondary distance indicators that employ stars in the old stellar populations: the planetary nebula luminosity function (PNLF), the globular cluster luminosity function (GCLF), the tip of the red giant branch (TRGB), and the surface brightness fluctuation (SBF) method. The database includes all data published as of July 15, 1999. The main strength of this compilation resides in all data being on a consistent and homogeneous system: all Cepheid distances are derived using the same calibration of the period-luminosity relation, the treatment of errors is consistent for all indicators, measurements which are not considered reliable are excluded. As such, the database is ideal for inter-comparing any of the distance indicators considered, or for deriving a Cepheid calibration to any secondary distance indicator. Specifically, the database includes: 1) Cepheid distances, extinctions and metallicities; 2) apparent magnitudes of the PNLF cutoff; 3) apparent magnitudes and colors of the turnover of the GCLF (both in the V- and B-bands); 4) apparent magnitudes of the TRGB (in the I-band) and V-I colors at and 0.5 magnitudes fainter than the TRGB; 5) apparent surface brightness fluctuation magnitudes I, K', K_short, and using the F814W filter with the HST/WFPC2. In addition, for every galaxy in the database we give reddening estimates from DIRBE/IRAS as well as HI maps, J2000 coordinates, Hubble and T-type morphological classification, apparent total magnitude in B, and systemic velocity. (Abridged)Comment: Accepted for publication in the Astrophysical Journal Supplement Series. Because of space limitations, the figures included are low resolution bitmap images. Original figures can be found at http://www.astro.ucla.edu/~laura/pub.ht

    Development and testing of a fiber/multianode photomultiplier system for use on FiberGLAST

    Get PDF
    A scintillating fiber detector is currently being studied for the NASA Gamma-Ray Large Area Space Telescope (GLAST) mission. This detector utilizes modules composed of a thin converter sheet followed by an x, y plane of scintillating fibers to examine the shower of particles created by high energy gamma-rays interacting in the converter material. The detector is composed of a tracker with 90 such modular planes and a calorimeter with 36 planes. The two major component of this detector are the scintillating fibers and their associated photodetectors. Here we present current status of development and test result of both of these. The Hamamatsu R5900-00-M64 multianode photomultiplier tube (MAPMT) is the baseline readout device. A characterization of this device has been performed including noise, cross- talk, gain variation, vibration, and thermal/vacuum test. A prototype fiber/MAPMT system has been tested at the Center for Advanced Microstructures and Devices at Louisiana State University with a photon beam and preliminary results are presented

    The Extragalactic Distance Scale Key Project XXVII. A Derivation of the Hubble Constant Using the Fundamental Plane and Dn-Sigma Relations in Leo I, Virgo, and Fornax

    Full text link
    Using published photometry and spectroscopy, we construct the fundamental plane and D_n-Sigma relations in Leo I, Virgo and Fornax. The published Cepheid P-L relations to spirals in these clusters fixes the relation between angular size and metric distance for both the fundamental plane and D_n-Sigma relations. Using the locally calibrated fundamental plane, we infer distances to a sample of clusters with a mean redshift of cz \approx 6000 \kms, and derive a value of H_0=78+- 5+- 9 km/s/Mpc (random, systematic) for the local expansion rate. This value includes a correction for depth effects in the Cepheid distances to the nearby clusters, which decreased the deduced value of the expansion rate by 5% +- 5%. If one further adopts the metallicity correction to the Cepheid PL relation, as derived by the Key Project, the value of the Hubble constant would decrease by a further 6%+- 4%. These two sources of systematic error, when combined with a +- 6% error due to the uncertainty in the distance to the Large Magellanic Cloud, a +- 4% error due to uncertainties in the WFPC2 calibration, and several small sources of uncertainty in the fundamental plane analysis, combine to yield a total systematic uncertainty of +- 11%. We find that the values obtained using either the CMB, or a flow-field model, for the reference frame of the distant clusters, agree to within 1%. The Dn-Sigma relation also produces similar results, as expected from the correlated nature of the two scaling relations. A complete discussion of the sources of random and systematic error in this determination of the Hubble constant is also given, in order to facilitate comparison with the other secondary indicators being used by the Key Project.Comment: 21 pages, 3 figures, Accepted for publication in Ap

    The HST Key Project on the Extragalactic Distance Scale. XXVIII. Combining the Constraints on the Hubble Constant

    Full text link
    Since the launch of the Hubble Space Telescope nine years ago, Cepheid distances to 25 galaxies have been determined for the purpose of calibrating secondary distance indicators. A variety of these can now be calibrated, and the accompanying papers by Sakai, Kelson, Ferrarese, and Gibson employ the full set of 25 galaxies to consider the Tully-Fisher relation, the fundamental plane of elliptical galaxies, Type Ia supernovae, and surface brightness fluctuations. When calibrated with Cepheid distances, each of these methods yields a measurement of the Hubble constant and a corresponding measurement uncertainty. We combine these measurements in this paper, together with a model of the velocity field, to yield the best available estimate of the value of H_0 within the range of these secondary distance indicators and its uncertainty. The result is H_0 = 71 +/- 6 km/sec/Mpc. The largest contributor to the uncertainty of this 67% confidence level result is the distance of the Large Magellanic Cloud, which has been assumed to be 50 +/- 3 kpc
    corecore