202 research outputs found

    On the Temperature Dependence of Point-Defect-Mediated Luminescence in Silicon

    Get PDF
    We present a model of the temperature dependence of point-defect-mediated luminescence in silicon derived from basic kinetics and semiconductor physics and based on the kinetics of bound exciton formation. The model provides a good fit to data for W line electroluminescence and G line photoluminescence in silicon. Strategies are discussed for extending luminescence to room temperature.Engineering and Applied Science

    Insulator-to-Metal Transition in Selenium-Hyperdoped Silicon: Observation and Origin

    Full text link
    Hyperdoping has emerged as a promising method for designing semiconductors with unique optical and electronic properties, although such properties currently lack a clear microscopic explanation. Combining computational and experimental evidence, we probe the origin of sub-band gap optical absorption and metallicity in Se-hyperdoped Si. We show that sub-band gap absorption arises from direct defect-to-conduction band transitions rather than free carrier absorption. Density functional theory predicts the Se-induced insulator-to-metal transition arises from merging of defect and conduction bands, at a concentration in excellent agreement with experiment. Quantum Monte Carlo calculations confirm the critical concentration, demonstrate that correlation is important to describing the transition accurately, and suggest that it is a classic impurity-driven Mott transition.Comment: 5 pages, 3 figures (PRL formatted

    Insulator-to-metal transition in sulfur-doped silicon

    Get PDF
    We observe an insulator-to-metal (I-M) transition in crystalline silicon doped with sulfur to non- equilibrium concentrations using ion implantation followed by pulsed laser melting and rapid resolidification. This I-M transition is due to a dopant known to produce only deep levels at equilibrium concentrations. Temperature-dependent conductivity and Hall effect measurements for temperatures T > 1.7 K both indicate that a transition from insulating to metallic conduction occurs at a sulfur concentration between 1.8 and 4.3 x 10^20 cm-3. Conduction in insulating samples is consistent with variable range hopping with a Coulomb gap. The capacity for deep states to effect metallic conduction by delocalization is the only known route to bulk intermediate band photovoltaics in silicon.Comment: Submission formatting; 4 journal pages equivalen

    Enhancing the Infrared Photoresponse of Silicon by Controlling the Fermi Level Location within an Impurity Band

    Get PDF
    Strong absorption of sub-band gap radiation by an impurity band has recently been demonstrated in silicon supersaturated with chalcogen impurities. However, despite the enhanced absorption in this material, the transformation of infrared radiation into an electrical signal via extrinsic photoconductivity—the critical performance requirement for many optoelectronic applications—has only been reported at low temperature because thermal impurity ionization overwhelms photoionization at room temperature. Here, dopant compensation is used to manipulate the optical and electronic properties and thereby improve the room-temperature infrared photoresponse. Silicon co-doped with boron and sulfur is fabricated using ion implantation and nanosecond pulsed laser melting to achieve supersaturated sulfur concentrations and a matched boron distribution. The location of the Fermi level within the sulfur-induced impurity band is controlled by tuning the acceptor-to-donor ratio, and through this dopant compensation, three orders of magnitude improvement in infrared detection at 1550 nm is demonstrated.Engineering and Applied Science

    Deactivation of metastable single-crystal silicon hyperdoped with sulfur

    Get PDF
    Silicon supersaturated with sulfur by ion implantation and pulsed laser melting exhibits broadband optical absorption of photons with energies less than silicon's band gap. However, this metastable, hyperdoped material loses its ability to absorb sub-band gap light after subsequent thermal treatment. We explore this deactivation process through optical absorption and electronic transport measurements of sulfur-hyperdoped silicon subject to anneals at a range of durations and temperatures. The deactivation process is well described by the Johnson-Mehl-Avrami-Kolmogorov framework for the diffusion-mediated transformation of a metastable supersaturated solid solution, and we find that this transformation is characterized by an apparent activation energy of E[subscript A] = 1.7 ± 0.1  eV. Using this activation energy, the evolution of the optical and electronic properties for all anneal duration-temperature combinations collapse onto distinct curves as a function of the extent of reaction. We provide a mechanistic interpretation of this deactivation based on short-range thermally activated atomic movements of the dopants to form sulfur complexes.Center for Clean Water and Clean Energy at MIT and KFUPMNational Science Foundation (U.S.) (Energy, Power, and Adaptive Systems Grant Contract ECCS-1102050)National Science Foundation (U.S.) (United States. Dept. of Energy Contract EEC-1041895

    Photocarrier lifetime and transport in silicon supersaturated with sulfur

    No full text
    Doping of silicon-on-insulator layers with sulfur to concentrations far above equilibrium by ion implantation and pulsed laser melting can result in large concentration gradients. Photocarriers generated in and near the impurity gradient can separate into different coplanar transport layers, leading to enhanced photocarrier lifetimes in thin silicon-on-insulator films. The depth from which holes escape the heavily doped region places a lower limit on the minority carrier mobility-lifetime product of 10⁻⁸ cm²/V for heavily sulfur dopedsilicon. We conclude that the cross-section for recombination through S impurities at this concentration is significantly reduced relative to isolated impurities.Research at Rensselaer was supported by the Army Research Office under Contract No. W911NF0910470 and by the NSF REU program at Rensselaer. Research at Harvard was supported by US Army ARDEC under Contract No. W15QKN-07-P-0092. D.R. was supported in part by a National Defense Science and Engineering Graduate fellowship

    Robust efficiency and actuator saturation explain healthy heart rate control and variability

    Get PDF
    The correlation of healthy states with heart rate variability (HRV) using time series analyses is well documented. Whereas these studies note the accepted proximal role of autonomic nervous system balance in HRV patterns, the responsible deeper physiological, clinically relevant mechanisms have not been fully explained. Using mathematical tools from control theory, we combine mechanistic models of basic physiology with experimental exercise data from healthy human subjects to explain causal relationships among states of stress vs. health, HR control, and HRV, and more importantly, the physiologic requirements and constraints underlying these relationships. Nonlinear dynamics play an important explanatory role––most fundamentally in the actuator saturations arising from unavoidable tradeoffs in robust homeostasis and metabolic efficiency. These results are grounded in domain-specific mechanisms, tradeoffs, and constraints, but they also illustrate important, universal properties of complex systems. We show that the study of complex biological phenomena like HRV requires a framework which facilitates inclusion of diverse domain specifics (e.g., due to physiology, evolution, and measurement technology) in addition to general theories of efficiency, robustness, feedback, dynamics, and supporting mathematical tools

    Supersaturating silicon with transition metals by ion implantation and pulsed laser melting

    Get PDF
    We investigate the possibility of creating an intermediate band semiconductor by supersaturating Si with a range of transition metals (Au, Co, Cr, Cu, Fe, Pd, Pt, W, and Zn) using ion implantation followed by pulsed laser melting (PLM). Structural characterization shows evidence of either surface segregation or cellular breakdown in all transition metals investigated, preventing the formation of high supersaturations. However, concentration-depth profiling reveals that regions of Si supersaturated with Au and Zn are formed below the regions of cellular breakdown. Fits to the concentration-depth profile are used to estimate the diffusive speeds, v [subscript D], of Au and Zn, and put lower bounds on v [subscript D] of the other metals ranging from 10[superscript 2] to 10[superscript 4] m/s. Knowledge of v [subscript D] is used to tailor the irradiation conditions and synthesize single-crystal Si supersaturated with 10[superscript 19] Au/cm[superscript 3] without cellular breakdown. Values of v [subscript D] are compared to those for other elements in Si. Two independent thermophysical properties, the solute diffusivity at the melting temperature, D [subscript s](T [subscript m]), and the equilibrium partition coefficient, k [subscript e], are shown to simultaneously affect v [subscript D]. We demonstrate a correlation between v [subscript D] and the ratio D [subscript s](T [subscript m])/k [subscript e] [superscript 0.67], which is exhibited for Group III, IV, and V solutes but not for the transition metals investigated. Nevertheless, comparison with experimental results suggests that D [subscript s](T [subscript m])/k [subscript e] [superscript 0.67] might serve as a metric for evaluating the potential to supersaturate Si with transition metals by PLM.National Science Foundation (U.S.) (Faculty Early Career Development Program ECCS-1150878)Chesonis Family FoundationUnited States. Army Research Laboratory (United States. Army Research Office Grant W911NF-10-1-0442)National Science Foundation (U.S.) (United States. Dept. of Energy NSF CA EEC-1041895
    corecore