512 research outputs found
Nanofiber-based optical trapping of cold neutral atoms
We present experimental techniques and results related to the optimization
and characterization of our nanofiber-based atom trap [Vetsch et al., Phys.
Rev. Lett. 104, 203603 (2010)]. The atoms are confined in an optical lattice
which is created using a two-color evanescent field surrounding the optical
nanofiber. For this purpose, the polarization state of the trapping light
fields has to be properly adjusted. We demonstrate that this can be
accomplished by analyzing the light scattered by the nanofiber. Furthermore, we
show that loading the nanofiber trap from a magneto-optical trap leads to
sub-Doppler temperatures of the trapped atomic ensemble and yields a
sub-Poissonian distribution of the number of trapped atoms per trapping site
Nanofiber-Based Double-Helix Dipole Trap for Cold Neutral Atoms
A double-helix optical trapping potential for cold atoms can be
straightforwardly created inside the evanescent field of an optical nanofiber.
It suffices to send three circularly polarized light fields through the
nanofiber; two counterpropagating and far red-detuned with respect to the
atomic transition and the third far blue-detuned. Assuming realistic
experimental parameters, the transverse confinement of the resulting potential
allows one to reach the one-dimensional regime with cesium atoms for
temperatures of several \muK. Moreover, by locally varying the nanofiber
diameter, the radius and pitch of the double-helix can be modulated, thereby
opening a realm of applications in cold-atom physics.Comment: 9 pages, 4 figure
Discovery of a natural CO2 seep in the German North Sea: implications for shallow dissolved gas and seep detection
A natural carbon dioxide (CO2) seep was discovered during an expedition to the southern German North Sea (October 2008). Elevated CO2 levels of ∼10–20 times above background were detected in seawater above a natural salt dome ∼30 km north of the East-Frisian Island Juist. A single elevated value 53 times higher than background was measured, indicating a possible CO2 point source from the seafloor. Measured pH values of around 6.8 support modeled pH values for the observed high CO2 concentration. These results are presented in the context of CO2 seepage detection, in light of proposed subsurface CO2 sequestering and growing concern of ocean acidification. We explore the boundary conditions of CO2 bubble and plume seepage and potential flux paths to the atmosphere. Shallow bubble release experiments conducted in a lake combined with discrete-bubble modeling suggest that shallow CO2 outgassing will be difficult to detect as bubbles dissolve very rapidly (within meters). Bubble-plume modeling further shows that a CO2 plume will lose buoyancy quickly because of rapid bubble dissolution while the newly CO2-enriched water tends to sink toward the seabed. Results suggest that released CO2 will tend to stay near the bottom in shallow systems (<200 m) and will vent to the atmosphere only during deep water convection (water column turnover). While isotope signatures point to a biogenic source, the exact origin is inconclusive because of dilution. This site could serve as a natural laboratory to further study the effects of carbon sequestration below the seafloor
Depth Dose Distribution Study within a Phantom Torso after Irradiation with a Simulated Solar Particle Event at NSRL
The adequate knowledge of the radiation environment and the doses incurred during a space mission is essential for estimating an astronaut's health risk. The space radiation environment is complex and variable, and exposures inside the spacecraft and the astronaut's body are compounded by the interactions of the primary particles with the atoms of the structural materials and with the body itself Astronauts' radiation exposures are measured by means of personal dosimetry, but there remains substantial uncertainty associated with the computational extrapolation of skin dose to organ dose, which can lead to over- or underestimation of the health risk. Comparisons of models to data showed that the astronaut's Effective dose (E) can be predicted to within about a +10% accuracy using space radiation transport models for galactic cosmic rays (GCR) and trapped radiation behind shielding. However for solar particle event (SPE) with steep energy spectra and for extra-vehicular activities on the surface of the moon where only tissue shielding is present, transport models predict that there are large differences in model assumptions in projecting organ doses. Therefore experimental verification of SPE induced organ doses may be crucial for the design of lunar missions. In the research experiment "Depth dose distribution study within a phantom torso" at the NASA Space Radiation Laboratory (NSRL) at BNL, Brookhaven, USA the large 1972 SPE spectrum was simulated using seven different proton energies from 50 up to 450 MeV. A phantom torso constructed of natural bones and realistic distributions of human tissue equivalent materials, which is comparable to the torso of the MATROSHKA phantom currently on the ISS, was equipped with a comprehensive set of thermoluminescence detectors and human cells. The detectors are applied to assess the depth dose distribution and radiation transport codes (e.g. GEANT4) are used to assess the radiation field and interactions of the radiation field with the phantom torso. Lymphocyte cells are strategically embedded at selected locations at the skin and internal organs and are processed after irradiation to assess the effects of shielding on the yield of chromosome damage. The initial focus of the present experiment is to correlate biological results with physical dosimetry measurements in the phantom torso. Further on, the results of the passive dosimetry within the anthropomorphic phantoms represent the best tool to generate reliable data to benchmark computational radiation transport models in a radiation field of interest. The presentation will give first results of the physical dose distribution, the comparison with GEANT4 computer simulations based on a Voxel model of the phantom, and a comparison with the data from the chromosome aberration study
How to decompress the Pressure - The moderating Effect of IT Flexibility on the negative Impact of Governmental Pressure on Business Agility
In times of digital transformation banks need to behave agile and increase their speed in IT. At the same time, they are bound by an increasing number of regulatory rules at an increasing pace that force them to act carefully. Since governments frequently introduce new regulatory terms, especially in the finance sector, regulation is a changing phenomenon itself, which forces banks to adjust and change their systems constantly. To manage these challenges, we argue that successful businesses need to have a flexible IT architecture in place. This should enable them to update and reconfigure their systems in a cost effective and prompt manner. By doing this, they should be able to compensate for the regulatory pressure and remain agile. Based on an analysis of 119 survey results, we find that business agility is indeed lower for higher regulatory pressure and that this effect is mitigated by a flexible IT
Herstellung und Eigenschaften von Oberflächenwellen-Strukturen in Cu-Damaszentechnologie
Im Mittelpunkt der vorliegenden Arbeit stehen Bauelemente, die auf der Basis von sog. akustischen Oberflächenwellen, in der Fachsprache üblicherweise mit dem Begriff SAW (surface acoustic wave) bezeichnet, arbeiten. In den vergangenen ca. 40 Jahren haben SAW-Bauelemente einen außerordentlich starken Aufschwung erlebt. Den Beginn markierte ein neuartiger Zwischenfrequenz-Filter für Fernsehgeräte am Ende der 1960er Jahre. Heute finden sich unterschiedliche Arten dieser Bauelemente in nahezu jedem Bereich unseres täglichen Lebens wieder. Als Beispiele können hier allgemein die draht-, funk- und fasergestützte Daten- und Signalübertragung und im Speziellen Mobil- und Schnurlostelefone oder Fernbedienungen genannt werden. Inzwischen sind auch neue Anwendungen in der Sensorik sowie der Identifikationstechnik hinzugekommen. Es gibt für SAW-Bauelemente eine Entwicklung hin zu höheren Arbeitsfrequenzen, steigenden Leistungen, erhöhter Zuverlässigkeit, weiterer Miniaturisierung und zunehmender Modulintegration, wobei alle Anforderungen bei gleichzeitig sinkenden Herstellungskosten realisiert werden müssen. Dabei zeichnet sich ab, dass mit den herkömmlichen Herstellungstechnologien nicht alle Bedürnisse erfüllt werden können. So ist z.B. die Lift-off-Technik, mit der ein Großteil der Bauelemente hergestellt wird, nicht auf beliebig kleine Strukturen anwendbar. Eine Alternative bildet die sog. Damaszentechnologie, die auch zur Herstellung modernster Mikroprozessoren eingesetzt wird. Dabei werden die Metallelektroden anstatt auf dem Substrat aufzuliegen, in das Substrat eingelassen, woraus sich für zukünftige SAWBauelemente Vorteile ergeben können, wie z.B. eine erhöhte Leistungsbeständigkeit, kostengünstige Abscheideverfahren, eine Reduktion der Strukturgrößen und eine planare Oberfläche. Das Ziel der vorliegenden Arbeit liegt darin, die Damaszentechnologie erstmalig auf SAW-Strukturen anzuwenden und mit den Vorteilen der Cu-Technologie zu kombinieren. Als inhaltliche Schwerpunkte wurden die Herstellung von Demonstratorbauelementen und die Bewertung der Prozessschritte, die Eigenschaftsbestimmung der Strukturen sowie deren Schädigungsverhalten bei Leistungsbelastung definiert
Analyse der intrafraktionellen Bewegung während der Bestrahlung von Brustkrebs mittels optischer Methoden
Die intrafraktionelle Bewegung ist ein relevantes Thema in der modernen Strahlentherapie. Bisher gibt es nur wenige Daten über den zeitlichen Verlauf und das Ausmaß der intrafraktionellen Bewegung bei Brustkrebs-Patientinnen. Ein Oberflächen-Scanverfahren mit sichtbarem Licht in Echtzeit bietet neuerdings die Möglichkeit, die Bewegungen der Patienten im dreidimensionalen Raum ohne zusätzliche Strahlenbelastung zu überwachen. Ziel der vorliegenden Studie war es, die Unsicherheiten einer möglichen intrafraktionellen Bewegung während der Bestrahlung der Brust zu quantifizieren.
104 Patienten, die nach einer brusterhaltenden Operation oder Mastektomie eine postoperative Strahlentherapie erhielten, wurden im Rahmen dieser prospektiven Studie während 2028 Bestrahlungssitzungen evaluiert. Während jeder Behandlungssitzung wurde die Bewegung der Patienten mit dem optischen Oberflächenscanner CatalystTM (Firma C-RAD AB, Schweden) kontinuierlich gemessen und mit einem zu Beginn jeder Sitzung aufgenommenen Referenzscan verglichen. Das Catalyst-System arbeitet mittels einer optischen Oberflächenabtastung mit LED-Licht (blau: λ = 450 nm) und einer CCD-Kamera (grün: λ = 528 nm; rot: λ = 624 nm), die eine Positionskontrolle während der Behandlung ermöglicht. Für die 3D-Oberflächenrekonstruktion verwendet das System einen Algorithmus für nicht starre Körper, um den Abstand zwischen der Oberfläche und dem Isozentrum nach dem Prinzip der optischen Triangulation zu berechnen. Dreidimensionale Abweichungen und relative Positionsdifferenzen über den gesamten Behandlungszeitraum wurden vom System erfasst, in Folge weiterverarbeitet und statistisch ausgewertet.
Insgesamt ergab die maximale Amplitude des Abweichungsvektors (bezogen auf ein definiertes Isozentrum) während des gesamten Beobachtungszeitraums einen Mittelwert von 1,93 mm ± 1,14 mm (Standardabweichung [SD]) (95%-Konfidenzintervall: [0,48 - 4,65] mm) und einen mittleren Wert von 1,63 mm während der reinen Dosisanwendung (nur Beam-on-Zeit). Entlang der longitudinalen und lateralen Achse waren die Veränderungen relativ ähnlich (0,18 mm ± 1,06 mm vs. 0,17 mm ± 1,32 mm), auf der vertikalen Achse betrug die mittlere Änderung 0,68 mm ± 1,53
mm. Die mittlere Bestrahlungszeit je Sitzung betrug 154 ± 53 (SD) Sekunden. Basierend auf weiterführenden statistischen Tests, waren die Ergebnisse der t-Tests zur Analyse der mittleren Abweichungen im Vergleich zu einem Wert von Null, für alle drei räumliche Achsen (lateral, longitudinal und vertikal) statistisch signifikant (p<0,01). Dies bedeutet, dass ein Drift des Isozentrums während der Behandlung entlang aller Achsen deutlich größer als Null vorliegt. In der Post-Hoc-Analyse gab es jedoch keine Ähnlichkeiten zwischen zwei der drei möglichen Raumachsen.
Zusammenfassend lässt sich schlussfolgern, dass das optische Oberflächenscan-System ein präzises, nicht-invasives und einfach zu benutzendes Werkzeug für das Echtzeit-Bewegungsmanagement in der Strahlentherapie von Brustkrebs darstellt. Die intrafraktionelle Bewegung lag letztlich innerhalb von fünf Millimetern in alle Richtungen. Daher scheint die intrafraktionelle Bewegung in unserer Serie von 2028 Behandlungssitzungen von geringer klinischer Relevanz für die postoperative Strahlentherapie bei Brustkrebs zu sein
A Nanofiber-Based Optical Conveyor Belt for Cold Atoms
We demonstrate optical transport of cold cesium atoms over millimeter-scale
distances along an optical nanofiber. The atoms are trapped in a
one-dimensional optical lattice formed by a two-color evanescent field
surrounding the nanofiber, far red- and blue-detuned with respect to the atomic
transition. The blue-detuned field is a propagating nanofiber-guided mode while
the red-detuned field is a standing-wave mode which leads to the periodic axial
confinement of the atoms. Here, this standing wave is used for transporting the
atoms along the nanofiber by mutually detuning the two counter-propagating
fields which form the standing wave. The performance and limitations of the
nanofiber-based transport are evaluated and possible applications are
discussed
Analyse der intrafraktionellen Bewegung während der Bestrahlung von Brustkrebs mittels optischer Methoden
Die intrafraktionelle Bewegung ist ein relevantes Thema in der modernen Strahlentherapie. Bisher gibt es nur wenige Daten über den zeitlichen Verlauf und das Ausmaß der intrafraktionellen Bewegung bei Brustkrebs-Patientinnen. Ein Oberflächen-Scanverfahren mit sichtbarem Licht in Echtzeit bietet neuerdings die Möglichkeit, die Bewegungen der Patienten im dreidimensionalen Raum ohne zusätzliche Strahlenbelastung zu überwachen. Ziel der vorliegenden Studie war es, die Unsicherheiten einer möglichen intrafraktionellen Bewegung während der Bestrahlung der Brust zu quantifizieren.
104 Patienten, die nach einer brusterhaltenden Operation oder Mastektomie eine postoperative Strahlentherapie erhielten, wurden im Rahmen dieser prospektiven Studie während 2028 Bestrahlungssitzungen evaluiert. Während jeder Behandlungssitzung wurde die Bewegung der Patienten mit dem optischen Oberflächenscanner CatalystTM (Firma C-RAD AB, Schweden) kontinuierlich gemessen und mit einem zu Beginn jeder Sitzung aufgenommenen Referenzscan verglichen. Das Catalyst-System arbeitet mittels einer optischen Oberflächenabtastung mit LED-Licht (blau: λ = 450 nm) und einer CCD-Kamera (grün: λ = 528 nm; rot: λ = 624 nm), die eine Positionskontrolle während der Behandlung ermöglicht. Für die 3D-Oberflächenrekonstruktion verwendet das System einen Algorithmus für nicht starre Körper, um den Abstand zwischen der Oberfläche und dem Isozentrum nach dem Prinzip der optischen Triangulation zu berechnen. Dreidimensionale Abweichungen und relative Positionsdifferenzen über den gesamten Behandlungszeitraum wurden vom System erfasst, in Folge weiterverarbeitet und statistisch ausgewertet.
Insgesamt ergab die maximale Amplitude des Abweichungsvektors (bezogen auf ein definiertes Isozentrum) während des gesamten Beobachtungszeitraums einen Mittelwert von 1,93 mm ± 1,14 mm (Standardabweichung [SD]) (95%-Konfidenzintervall: [0,48 - 4,65] mm) und einen mittleren Wert von 1,63 mm während der reinen Dosisanwendung (nur Beam-on-Zeit). Entlang der longitudinalen und lateralen Achse waren die Veränderungen relativ ähnlich (0,18 mm ± 1,06 mm vs. 0,17 mm ± 1,32 mm), auf der vertikalen Achse betrug die mittlere Änderung 0,68 mm ± 1,53
mm. Die mittlere Bestrahlungszeit je Sitzung betrug 154 ± 53 (SD) Sekunden. Basierend auf weiterführenden statistischen Tests, waren die Ergebnisse der t-Tests zur Analyse der mittleren Abweichungen im Vergleich zu einem Wert von Null, für alle drei räumliche Achsen (lateral, longitudinal und vertikal) statistisch signifikant (p<0,01). Dies bedeutet, dass ein Drift des Isozentrums während der Behandlung entlang aller Achsen deutlich größer als Null vorliegt. In der Post-Hoc-Analyse gab es jedoch keine Ähnlichkeiten zwischen zwei der drei möglichen Raumachsen.
Zusammenfassend lässt sich schlussfolgern, dass das optische Oberflächenscan-System ein präzises, nicht-invasives und einfach zu benutzendes Werkzeug für das Echtzeit-Bewegungsmanagement in der Strahlentherapie von Brustkrebs darstellt. Die intrafraktionelle Bewegung lag letztlich innerhalb von fünf Millimetern in alle Richtungen. Daher scheint die intrafraktionelle Bewegung in unserer Serie von 2028 Behandlungssitzungen von geringer klinischer Relevanz für die postoperative Strahlentherapie bei Brustkrebs zu sein
- …
