325 research outputs found

    Cognitive dimensions of predator responses to imperfect mimicry?

    Get PDF
    Many palatable insects, for example hoverflies, deter predators by mimicking well-defended insects such as wasps. However, for human observers, these flies often seem to be little better than caricatures of wasps – their visual appearance and behaviour are easily distinguishable. This imperfect mimicry baffles evolutionary biologists, because one might expect natural selection to do a more thorough job. Here we discuss two types of cognitive processes that might explain why mimics distinguishable mimics might enjoy increased protection from predation. Speed accuracy tradeoffs in predator decision making might give imperfect mimics sufficient time to escape, and predators under time constraint might avoid time-consuming discriminations between well-defended models and inaccurate edible mimics, and instead adopt a “safety first” policy of avoiding insects with similar appearance. Categorization of prey types by predators could mean that wholly dissimilar mimics may be protected, provided they share some common property with noxious prey

    Comparative costs and activity from a sample of UK clinical trials units

    Get PDF
    BackgroundThe costs of medical research are a concern. Clinical Trials Units (CTU) need to better understand reasonable and legitimate variations in the costs of activities.MethodsRepresentatives of ten CTUs and two grant-awarding bodies pooled their experiences in discussions over a year-and-a-half. Five of the CTUs provided estimates of, and written justification for, costs associated with CTU activities required to implement an identical protocol. The protocol described a 5.5 year non-pharmacological RCT conducted at 20 centres. Direct and indirect costs, the number of Full Time Equivalents (FTEs) and the FTEs attracting overheads were compared and qualitative methods (unstructured interviews and thematic analysis) were used to interpret the results. Four members of the group (funding-body representatives or award panel members) reviewed the justification statements for transparency and information content. Separately, 163 activities common to trials were assigned to roles used by nine CTUs; the consistency of role delineation was assessed by Cohen's κ.ResultsMedian full economic cost of CTU activities was £769,637 (range: £661,112 to £1,383,323). Indirect costs varied considerably, accounting for between 15% and 59% (median 35%) of the full economic cost of the grant. Excluding one CTU which used external statisticians, the total number of FTEs ranged from 2.0 to 3.0; total FTEs attracting overheads ranged from 0.3 to 2.0. Variation in directly incurred staff costs depended on whether CTUs: supported particular roles from core funding rather than grants; opted not to cost certain activities into the grant; assigned clerical or data management tasks to research or administrative staff; employed extensive on-site monitoring strategies (also the main source of variation in non-staff costs). Funders preferred written justifications of costs that described both FTEs and indicative tasks for funded roles, with itemised non-staff costs. Consistency in role delineation was fair(κ=0.21-0.40) for statisticians / data managers and poor for other roles (κ<0.20).ConclusionsSome variation in costs is due to factors outside the control of CTUs, such as access to core funding and levels of indirect costs levied by host institutions. Research is needed on strategies to control costs appropriately, especially the implementation of risk-based monitoring strategies

    A click-chemistry based approach for the synthesis of new BODIPY-labelled fluorescent ligands

    Get PDF
    Fluorescent ligands have found numerous applications for studying interactions of drug molecules with their target and as a probe of biological systems. A common approach when designing and synthesising a fuorescent ligand is to separate the fluorophore and pharmacophore via a linker. One novel approach is to utilise click chemistry to allow the coupling of fluorophore to a pharmacophore. This thesis reports the results of an investigation into utilising click chemistry, specifically the alkyne-azide copper (I) cycloaddition to synthesis novel fluorescent GPCR ligands. Targets included the β1, β2 adrenoceptor and the muscarinic M3 receptor. Investigations into the introduction of a 1,2,3-triazole within the linker to the fluorophore resulted in 14 novel fluorescent antagonists active at the β1 and β2 adrenoceptor. The most promising ligand had log Ki values of -6.77 ± 0.20 (β1) and -7.32 ± 0.05 (β2). These ligands were used in a confocal microscopy studies to visualise the β1 and β2 adrenoceptors on the surface of CHO cells. However the ligands internalistion, and receptor visualisation was not possible. A range of structural modifications were made to reduce this with the introduction of a polar linker but this did not reduce the intracellular accumulation. The change to a longer wavelength fluorophore stopped intracellular accumulation but reduced the binding log Ki to - 5.16 ± 0.06 (β1) -5.96 ± 0.20 (β2). Twenty two novel fluorescent M3 ligands were synthesised and their inhibitory properties were investigated. An initial screen showed four promising ligands and further study into the binding affinities showed the ligands to have high potency (log Kb -7.97 ± 0.07 to -8.89 ± 0.11). These ligands were studied with confocal microscopy and intracellular accumulation did not occur. Structural changes to include a polar side chain or a sulfonic acid onto the fluorophore were investigated and led to three novel fluorescent ligands that had reduced lipophilicity. With this reduced lipophilicity, binding affinities were also reduced by ten fold compared to the original fluorescent ligand. The seven ligands were fully profiled physiochemically and kinetically. The physioschemical properties of these seven ligands gave a wide variety of lipophilic values. The kinetic profiles of the ligands exhibited very similar dissociation properties to those of the parent ligand with varying association rates. The Muscarinic M3 ligands synthesised show great binding affinities for fluorescent ligands and kinetic profiles that are extremely similar to the parent ligand. These fluorescent ligands hold characteristics that can be used to further examine the pharmacology of muscarinic receptors and be used to replace radioligands for binding studies

    A click-chemistry based approach for the synthesis of new BODIPY-labelled fluorescent ligands

    Get PDF
    Fluorescent ligands have found numerous applications for studying interactions of drug molecules with their target and as a probe of biological systems. A common approach when designing and synthesising a fuorescent ligand is to separate the fluorophore and pharmacophore via a linker. One novel approach is to utilise click chemistry to allow the coupling of fluorophore to a pharmacophore. This thesis reports the results of an investigation into utilising click chemistry, specifically the alkyne-azide copper (I) cycloaddition to synthesis novel fluorescent GPCR ligands. Targets included the β1, β2 adrenoceptor and the muscarinic M3 receptor. Investigations into the introduction of a 1,2,3-triazole within the linker to the fluorophore resulted in 14 novel fluorescent antagonists active at the β1 and β2 adrenoceptor. The most promising ligand had log Ki values of -6.77 ± 0.20 (β1) and -7.32 ± 0.05 (β2). These ligands were used in a confocal microscopy studies to visualise the β1 and β2 adrenoceptors on the surface of CHO cells. However the ligands internalistion, and receptor visualisation was not possible. A range of structural modifications were made to reduce this with the introduction of a polar linker but this did not reduce the intracellular accumulation. The change to a longer wavelength fluorophore stopped intracellular accumulation but reduced the binding log Ki to - 5.16 ± 0.06 (β1) -5.96 ± 0.20 (β2). Twenty two novel fluorescent M3 ligands were synthesised and their inhibitory properties were investigated. An initial screen showed four promising ligands and further study into the binding affinities showed the ligands to have high potency (log Kb -7.97 ± 0.07 to -8.89 ± 0.11). These ligands were studied with confocal microscopy and intracellular accumulation did not occur. Structural changes to include a polar side chain or a sulfonic acid onto the fluorophore were investigated and led to three novel fluorescent ligands that had reduced lipophilicity. With this reduced lipophilicity, binding affinities were also reduced by ten fold compared to the original fluorescent ligand. The seven ligands were fully profiled physiochemically and kinetically. The physioschemical properties of these seven ligands gave a wide variety of lipophilic values. The kinetic profiles of the ligands exhibited very similar dissociation properties to those of the parent ligand with varying association rates. The Muscarinic M3 ligands synthesised show great binding affinities for fluorescent ligands and kinetic profiles that are extremely similar to the parent ligand. These fluorescent ligands hold characteristics that can be used to further examine the pharmacology of muscarinic receptors and be used to replace radioligands for binding studies

    An analysis of the problems in attracting primary health professionals to Northeast Kansas

    Get PDF
    Call number: LD2668 .P7 1974 D3

    Genome sequence of an Australian kangaroo, Macropus eugenii, provides insight into the evolution of mammalian reproduction and development.

    Get PDF
    BACKGROUND: We present the genome sequence of the tammar wallaby, Macropus eugenii, which is a member of the kangaroo family and the first representative of the iconic hopping mammals that symbolize Australia to be sequenced. The tammar has many unusual biological characteristics, including the longest period of embryonic diapause of any mammal, extremely synchronized seasonal breeding and prolonged and sophisticated lactation within a well-defined pouch. Like other marsupials, it gives birth to highly altricial young, and has a small number of very large chromosomes, making it a valuable model for genomics, reproduction and development. RESULTS: The genome has been sequenced to 2 × coverage using Sanger sequencing, enhanced with additional next generation sequencing and the integration of extensive physical and linkage maps to build the genome assembly. We also sequenced the tammar transcriptome across many tissues and developmental time points. Our analyses of these data shed light on mammalian reproduction, development and genome evolution: there is innovation in reproductive and lactational genes, rapid evolution of germ cell genes, and incomplete, locus-specific X inactivation. We also observe novel retrotransposons and a highly rearranged major histocompatibility complex, with many class I genes located outside the complex. Novel microRNAs in the tammar HOX clusters uncover new potential mammalian HOX regulatory elements. CONCLUSIONS: Analyses of these resources enhance our understanding of marsupial gene evolution, identify marsupial-specific conserved non-coding elements and critical genes across a range of biological systems, including reproduction, development and immunity, and provide new insight into marsupial and mammalian biology and genome evolution

    The Danish Gigaword Project

    Full text link
    Danish is a North Germanic/Scandinavian language spoken primarily in Denmark, a country with a tradition of technological and scientific innovation. However, from a technological perspective, the Danish language has received relatively little attention and, as a result, Danish language technology is hard to develop, in part due to a lack of large or broad-coverage Danish corpora. This paper describes the Danish Gigaword project, which aims to construct a freely-available one billion word corpus of Danish text that represents the breadth of the written language

    Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast

    Get PDF
    Large structural variations (SVs) within genomes are more challenging to identify than smaller genetic variants but may substantially contribute to phenotypic diversity and evolution. We analyse the effects of SVs on gene expression, quantitative traits and intrinsic reproductive isolation in the yeast Schizosaccharomyces pombe. We establish a high-quality curated catalogue of SVs in the genomes of a worldwide library of S. pombe strains, including duplications, deletions, inversions and translocations. We show that copy number variants (CNVs) show a variety of genetic signals consistent with rapid turnover. These transient CNVs produce stoichiometric effects on gene expression both within and outside the duplicated regions. CNVs make substantial contributions to quantitative traits, most notably intracellular amino acid concentrations, growth under stress and sugar utilization in winemaking, whereas rearrangements are strongly associated with reproductive isolation. Collectively, these findings have broad implications for evolution and for our understanding of quantitative traits including complex human diseases

    Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast

    Get PDF
    Large structural variations (SVs) within genomes are more challenging to identify than smaller genetic variants but may substantially contribute to phenotypic diversity and evolution. We analyse the effects of SVs on gene expression, quantitative traits and intrinsic reproductive isolation in the yeast Schizosaccharomyces pombe. We establish a high-quality curated catalogue of SVs in the genomes of a worldwide library of S. pombe strains, including duplications, deletions, inversions and translocations. We show that copy number variants (CNVs) show a variety of genetic signals consistent with rapid turnover. These transient CNVs produce stoichiometric effects on gene expression both within and outside the duplicated regions. CNVs make substantial contributions to quantitative traits, most notably intracellular amino acid concentrations, growth under stress and sugar utilization in winemaking, whereas rearrangements are strongly associated with reproductive isolation. Collectively, these findings have broad implications for evolution and for our understanding of quantitative traits including complex human diseases

    Towards a Personal Health Large Language Model

    Full text link
    In health, most large language model (LLM) research has focused on clinical tasks. However, mobile and wearable devices, which are rarely integrated into such tasks, provide rich, longitudinal data for personal health monitoring. Here we present Personal Health Large Language Model (PH-LLM), fine-tuned from Gemini for understanding and reasoning over numerical time-series personal health data. We created and curated three datasets that test 1) production of personalized insights and recommendations from sleep patterns, physical activity, and physiological responses, 2) expert domain knowledge, and 3) prediction of self-reported sleep outcomes. For the first task we designed 857 case studies in collaboration with domain experts to assess real-world scenarios in sleep and fitness. Through comprehensive evaluation of domain-specific rubrics, we observed that Gemini Ultra 1.0 and PH-LLM are not statistically different from expert performance in fitness and, while experts remain superior for sleep, fine-tuning PH-LLM provided significant improvements in using relevant domain knowledge and personalizing information for sleep insights. We evaluated PH-LLM domain knowledge using multiple choice sleep medicine and fitness examinations. PH-LLM achieved 79% on sleep and 88% on fitness, exceeding average scores from a sample of human experts. Finally, we trained PH-LLM to predict self-reported sleep quality outcomes from textual and multimodal encoding representations of wearable data, and demonstrate that multimodal encoding is required to match performance of specialized discriminative models. Although further development and evaluation are necessary in the safety-critical personal health domain, these results demonstrate both the broad knowledge and capabilities of Gemini models and the benefit of contextualizing physiological data for personal health applications as done with PH-LLM.Comment: 72 page
    corecore