21 research outputs found

    The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets

    Get PDF
    This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable information on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all objects that pass sunward of the perihelion distance of planet Mercury (0.307 AU). Sunskirters are defined as objects that pass within 33 solar radii of the Sun’s centre, equal to half of Mercury’s perihelion distance, and the commonly-used phrase sungrazers to be objects that reach perihelion within 3.45 solar radii, i.e. the fluid Roche limit. Finally, comets with orbits that intersect the solar photosphere are termed sundivers. We summarize past studies of these objects, as well as the instruments and facilities used to study them, including space-based platforms that have led to a recent revolution in the quantity and quality of relevant observations. Relevant comet populations are described, including the Kreutz, Marsden, Kracht, and Meyer groups, near-Sun asteroids, and a brief discussion of their origins. The importance of light curves and the clues they provide on cometary composition are emphasized, together with what information has been gleaned about nucleus parameters, including the sizes and masses of objects and their families, and their tensile strengths. The physical processes occurring at these objects are considered in some detail, including the disruption of nuclei, sublimation, and ionisation, and we consider the mass, momentum, and energy loss of comets in the corona and those that venture to lower altitudes. The different components of comae and tails are described, including dust, neutral and ionised gases, their chemical reactions, and their contributions to the near-Sun environment. Comet-solar wind interactions are discussed, including the use of comets as probes of solar wind and coronal conditions in their vicinities. We address the relevance of work on comets near the Sun to similar objects orbiting other stars, and conclude with a discussion of future directions for the field and the planned ground- and space-based facilities that will allow us to address those science topics

    TRPP2 and TRPV4 form a polymodal sensory channel complex

    Get PDF
    The primary cilium has evolved as a multifunctional cellular compartment that decorates most vertebrate cells. Cilia sense mechanical stimuli in various organs, but the molecular mechanisms that convert the deflection of cilia into intracellular calcium transients have remained elusive. Polycystin-2 (TRPP2), an ion channel mutated in polycystic kidney disease, is required for cilia-mediated calcium transients but lacks mechanosensitive properties. We find here that TRPP2 utilizes TRPV4 to form a mechano- and thermosensitive molecular sensor in the cilium. Depletion of TRPV4 in renal epithelial cells abolishes flow-induced calcium transients, demonstrating that TRPV4, like TRPP2, is an essential component of the ciliary mechanosensor. Because TRPV4-deficient zebrafish and mice lack renal cysts, our findings challenge the concept that defective ciliary flow sensing constitutes the fundamental mechanism of cystogenesis

    A new facility for airborne solar astronomy: NASA's WB-57 at the 2017 total solar eclipse

    Get PDF
    NASA's WB-57 High Altitude Research Program provides a deployable, mobile, stratospheric platform for scientific research. Airborne platforms are of particular value for making coronal observations during total solar eclipses because of their ability both to follow the Moon's shadow and to get above most of the atmospheric airmass that can interfere with astronomical observations. We used the 2017 Aug 21 eclipse as a pathfinding mission for high-altitude airborne solar astronomy, using the existing high-speed visible-light and near-/mid-wave infrared imaging suite mounted in the WB-57 nose cone. In this paper, we describe the aircraft, the instrument, and the 2017 mission; operations and data acquisition; and preliminary analysis of data quality from the existing instrument suite. We describe benefits and technical limitations of this platform for solar and other astronomical observations. We present a preliminary analysis of the visible-light data quality and discuss the limiting factors that must be overcome with future instrumentation. We conclude with a discussion of lessons learned from this pathfinding mission and prospects for future research at upcoming eclipses, as well as an evaluation of the capabilities of the WB-57 platform for future solar astronomy and general astronomical observation.Comment: 17 pages, 10 figures; accepted for publication by the Astrophysical Journa

    Gemmini: Enabling Systematic Deep-Learning Architecture Evaluation via Full-Stack Integration

    Full text link
    DNN accelerators are often developed and evaluated in isolation without considering the cross-stack, system-level effects in real-world environments. This makes it difficult to appreciate the impact of System-on-Chip (SoC) resource contention, OS overheads, and programming-stack inefficiencies on overall performance/energy-efficiency. To address this challenge, we present Gemmini, an open-source*, full-stack DNN accelerator generator. Gemmini generates a wide design-space of efficient ASIC accelerators from a flexible architectural template, together with flexible programming stacks and full SoCs with shared resources that capture system-level effects. Gemmini-generated accelerators have also been fabricated, delivering up to three orders-of-magnitude speedups over high-performance CPUs on various DNN benchmarks. * https://github.com/ucb-bar/gemminiComment: To appear at the 58th IEEE/ACM Design Automation Conference (DAC), December 2021, San Francisco, CA, US

    Influence of polycystin 2 on the calcium homeostasis of cells

    No full text
    Die Arbeit beschäftigt sich mit der Beeinflussung der Kalzium Homöostase von Zellen durch das Protein Polyzystin 2. Dieses Protein ist bei ca 15% der Fälle von Autosomal Dominanter Polyzystischer Nierenerkrankung verändert.The thesis deals with the influence of polycystin 2, one of the proteins mutated in autosomal dominant polycystic kidney disease, on the calcium homeostasis of cells

    TERT and DNMT1 expression predict sensitivity to decitabine in gliomas

    Full text link
    Abstract Background Decitabine (DAC) is an FDA-approved DNA methyltransferase (DNMT) inhibitor that is used in the treatment of patients with myelodysplastic syndromes. Previously, we showed that DAC marks antitumor activity against gliomas with isocitrate dehydrogenase 1 (IDH1) mutations. Based on promising preclinical results, a clinical trial has been launched to determine the effect of DAC in IDH-mutant gliomas. The next step is to comprehensively assess the efficacy and potential determinants of response to DAC in malignant gliomas. Methods The expression and activity of telomerase reverse transcriptase (TERT) and DNMT1 were manipulated in patient-derived IDH1-mutant and -wildtype glioma lines, followed by assessment of cell proliferation with DAC treatment alone or in combination with telomerase inhibitors. RNA sequencing, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and correlation analysis were performed. Results IDH1-mutant glioma tumorspheres with hemizygous codeletion of chromosome arms 1p/19q were particularly sensitive to DAC and showed significant inhibition of DNA replication genes. Our transcriptome analysis revealed that DAC induced expression of cyclin-dependent kinase inhibitor 1A/p21 (CDKN1A), along with downregulation of TERT. These molecular changes were also observed following doxorubicin treatment, supporting the importance of DAC-induced DNA damage in contributing to this effect. We demonstrated that knockdown of p21 led to TERT upregulation. Strikingly, TERT overexpression increased DNMT1 levels and DAC sensitivity via a telomerase-independent mechanism. Furthermore, RNA inhibition (RNAi) targeting of DNMT1 abrogated DAC response in TERT-proficient glioma cells. Conclusions DAC downregulates TERT through p21 induction. Our data point to TERT and DNMT1 levels as potential determinants of response to DAC treatment. </jats:sec
    corecore