267 research outputs found
Gene structure of the human receptor tyrosine kinase Ron and mutation analysis in lung cancer samples.
Integrin-mediated RON growth factor receptor phosphorylation requires tyrosine kinase activity of both the receptor and c-Src.
Decorin deficiency promotes hepatic carcinogenesis
Hepatocellular carcinoma represents one of the most-rapidly spreading cancers in the world. In the majority of cases, an inflammation-driven fibrosis or cirrhosis precedes the development of the tumor. During malignant transformation, the tumor microenvironment undergoes qualitative and quantitative changes that modulate the behavior of the malignant cells. A key constituent for the hepatic microenvironment is the small leucine-rich proteoglycan decorin, known to interfere with cellular events of tumorigenesis mainly by blocking various receptor tyrosine kinases (RTK) such as EGFR, Met, IGF-IR, PDGFR and VEGFR2. In this study, we characterized cell signaling events evoked by decorin deficiency in two experimental models of hepatocarcinogenesis using thioacetamide or diethyl nitrosamine as carcinogens. Genetic ablation of decorin led to enhanced tumor occurrence as compared to wild-type animals. These findings correlated with decreased levels of the cyclin-dependent kinase inhibitor p21WAF1/CIP1 and a concurrent elevation in retinoblastoma protein phosphorylation via cyclin dependent kinase 4. Decreased steady state p21Waf1/Cip1 levels correlated with enhanced expression of transcription factor AP4, a known transcriptional repressor of p21Waf1/Cip1, and enhanced c-Myc protein levels. In addition, translocation of beta-catenin was a typical event in diethyl nitrosamine-evoked tumors. In parallel, decreased phosphorylation of both c-Myc and beta-catenin was observed in Dcn-/- livers likely due to the hindered GSK3beta-mediated targeting of these proteins to proteasomal degradation. We discovered that in a genetic background lacking decorin, four RTKs were constitutively activated (phosphorylated), including three known targets of decorin such as PDGFRalpha, EGFR, IGF-IR, and a novel RTK MSPR/RON. Our findings provide powerful genetic evidence for a crucial in vivo role of decorin during hepatocarcinogenesis as lack of decorin in the liver and hepatic stroma facilitates experimental carcinogenesis by providing an environment devoid of this potent pan-RTK inhibitor. Thus, our results support future utilization of decorin as an antitumor agent in liver cancer
Crystal structure of the tyrosine kinase domain of the hepatocyte growth factor receptor c-Met and its complex with the microbial alkaloid K-252a
The protooncogene c-met codes for the hepatocyte growth factor receptor tyrosine kinase. Binding of its ligand, hepatocyte growth factor/scatter factor, stimulates receptor autophosphorylation, which leads to pleiotropic downstream signaling events in epithelial cells, including cell growth, motility, and invasion. These events are mediated by interaction of cytoplasmic effectors, generally through Src homology 2 (SH2) domains, with two phosphotyrosine-containing sequence motifs in the unique C-terminal tail of c-Met (supersite). There is a strong link between aberrant c-Met activity and oncogenesis, which makes this kinase an important cancer drug target. The furanosylated indolocarbazole K-252a belongs to a family of microbial alkaloids that also includes staurosporine. It was recently shown to be a potent inhibitor of c-Met. Here we report the crystal structures of an unphosphorylated c-Met kinase domain harboring a human cancer mutation and its complex with K-252a at 1.8-A resolution. The structure follows the well established architecture of protein kinases. It adopts a unique, inhibitory conformation of the activation loop, a catalytically noncompetent orientation of helix alphaC, and reveals the complete C-terminal docking site. The first SH2-binding motif (1349YVHV) adopts an extended conformation, whereas the second motif (1356YVNV), a binding site for Grb2-SH2, folds as a type II Beta-turn. The intermediate portion of the supersite (1353NATY) assumes a type I Beta-turn conformation as in an Shc-phosphotyrosine binding domain peptide complex. K-252a is bound in the adenosine pocket with an analogous binding mode to those observed in previously reported structures of protein kinases in complex with staurosporine
The c-Met receptor tyrosine kinase inhibitor MP470 radiosensitizes glioblastoma cells
<p>Abstract</p> <p>Purpose</p> <p>Glioblastoma multiforme (GBM) is resistant to current cytotoxic therapies, in part because of enhanced DNA repair. Activation of the receptor tyrosine kinase c-Met has been shown to protect cancer cells from DNA damage. We hypothesized that inhibiting c-Met would decrease this protection and thus sensitize resistant tumor cells to the effects of radiation therapy.</p> <p>Materials and methods</p> <p>Eight human GBM cell lines were screened for radiosensitivity to the small-molecule c-Met inhibitor MP470 with colony-count assays. Double-strand (ds) DNA breaks was quantified by using antibodies to gamma H2AX. Western blotting demonstrate expression of RAD51, glycogen synthase kinase (GSK)-3β, and other proteins. A murine xenograft tumor flank model was used for <it>in vivo </it>radiosensitization studies.</p> <p>Results</p> <p>MP470 reduced c-Met phosphorylation and enhanced radiation-induced cell kill by 0.4 logs in SF767 cells. Cells pretreated with MP470 had more ds DNA damage than cells treated with radiation alone. Mechanistically, MP470 was shown to inhibit dsDNA break repair and increase apoptosis. MP470 influences various survival and DNA repair related proteins such as pAKT, RAD51 and GSK3β. <it>In vivo</it>, the addition of MP470 to radiation resulted in a tumor-growth-delay enhancement ratio of 2.9 over radiation alone and extended survival time.</p> <p>Conclusions</p> <p>GBM is a disease site where radiation is often used to address both macroscopic and microscopic disease. Despite attempts at dose escalation outcomes remain poor. MP470, a potent small-molecule tyrosine kinase inhibitor of c-Met, radiosensitized several GBM cell lines both <it>in vitro </it>and <it>in vivo</it>, and may help to improve outcomes for patients with GBM.</p
Activation of the Met Receptor by Cell Attachment Induces and Sustains Hepatocellular Carcinomas in Transgenic Mice
Overexpression is the most common abnormality of receptor tyrosine kinases (RTKs) in human tumors. It is presumed that overexpression leads to constitutive activation of RTKs, but the mechanism of that activation has been uncertain. Here we show that overexpression of the Met RTK allows activation of the receptor by cell attachment and that this form of activation can be tumorigenic. Transgenic mice that overexpressed Met in hepatocytes developed hepatocellular carcinoma (HCC), one of the human tumors in which Met has been implicated previously. The tumorigenic Met was activated by cell attachment rather than by ligand. Inactivation of the transgene led to regression of even highly advanced tumors, apparently mediated by apoptosis and cessation of cellular proliferation. These results reveal a previously unappreciated mechanism by which the tumorigenic action of RTKs can be mediated, provide evidence that Met may play a role in both the genesis and maintenance of HCC, and suggest that Met may be a beneficial therapeutic target in tumors that overexpress the receptor
Co-expression of RON and MET is a prognostic indicator for patients with transitional-cell carcinoma of the bladder
Recepteur d'Origine Nantais (RON) is a distinct receptor tyrosine kinase in the c-met proto-oncogene family. We examined the mutational and expression patterns of RON in eight human uroepithelial cell lines. Biological effects of RON overexpression on cancer cells were investigated in vitro, and the prognostic significance of RON and/or c-met protein (MET) expression was analysed in a bladder cancer cohort (n=183). There was no evidence of mutation in the kinase domain of RON. Overexpression of RON using an inducible Tet-off system induced increased cell proliferation, motility, and antiapoptosis. Immunohistochemical analysis showed that RON was overexpressed in 60 cases (32.8%) of primary tumours, with 14 (23.3%) showing a high level of expression. Recepteur d'Origine Nantais expression was positively associated with histological grading, larger size, nonpapillary contour, and tumour stage (all P<0.01). In addition, MET was overexpressed in 82 cases (44.8%). Co-expressed RON and MET was significantly associated with decreased overall survival (P=0.005) or metastasis-free survival (P=0.01) in 35 cases (19.1%). Recepteur d'Origine Nantais-associated signalling may play an important role in the progression of human bladder cancer. Evaluation of RON and MET expression status may identify a subset of bladder-cancer patients who require more intensive treatment
Mechanisms of RON-mediated epithelial-mesenchymal transition in MDCK cells through the MAPK pathway
- …
